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FINAL REPORT

"Regularization and Approximation of a Class of Evolution Problems in Applied Mathematics"

R. Showalter and G. F. Carey

The major effort of this project has been the development of the foundations for

regularization techniques related to conservation equations and some new possibly far-reaching

contributions-to this area. The-approach-that has been taken-is a departure from the usual artificial

viscosity type of strategies which are produced on-a somewhat adhoc-basis. The basic strategy-is

to -regularize locally by a micro-structured parabolic system. A mathematical analysis of the

regularized equations-has been developed to support our approach. Supporting approximate

analysis and numerical experiments have-been made.

The-development-and the mathematical foundations of these microstructure models have

-been primary achievements of the project. The relevant nonlinear systems of partial differential

equations have also been shown to provide good models of diffusion or convection of fluid or gas

through a heterogeneous porous medium. Examples include flow in fissured media,.problems

withadsorption, heat-diffusion with freezing-melting, and models for semiconductors. We have

-established that the problems-are well-posed and developed the theory of the regularity and

dependence of the solutions on data. Such information will aid approximation theory and the

design of algorithms-to numerically simulate solutions to these types of problems.

The major step came with the rather complete devdfopment in-[1] of the linear case together

with appropriate convergence-and approximation-results. These results were extended in part to

fully nonlinear versions in [2]. :Classical versions were given in [8]. This work was summarized

in the review article [3] and has-been received with much interest. Moreover, the applications to

stationary problems [10] and to porous m edia [11] are underway.



We-have made related numerical studies using finite elements with the regularizing strategy

and-the results are promising. We have also been developing some related ideas which ate based

on superconvergence concepts in the approximate methods-used to solve both boundary and

evolution PDE's [4,5]. This is a very topical research area at-present as-far as post-processing

computed solutions is concerned [13,14]. Our approach is different in that we are using the post-

processing strategy to develop improved models and to develop alternative -regularization

strategies. This procedure also is appropriate for discrete homogenization, at a macro-structure

level-and can be combined with statistical averaging at-the micro-structure level as a regularization

strategy.

Numerical studies with regularization techniques have-been applied to flow calculations

[6,12]. This work i3 being extended currently to least-squares finite element analysis including

local regularization. Our previous work with a least-squares finite element formulation -and

parabolic regularization -[7] (motivated by [9]) confirmed that this type of regularization procedure

is applicable and the numerical results ate positive. Some of the challenging aspects of the

formulation arise in combining the microstructure regularization within the framework of a

macrostructure Galerkin finite element analysis. A- formulation for this embedding has been

developed.
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Diffusion -of Fluid in a Fissured Medium
with- -Mic-ro-Structure

R.-E. SIIONNA:LTER* -and N.J. WALI<INGTON

-Departmdnt of -Mathematics Department of Mathemnatics
University-of Texas Carnegie-Mellon University
Aiistin, TX 78712k Pittsbuigh, PA 15213

1. Introd-uction

We -shall -study, the Cauchy-Dirihlet -problem- for degenerate paabolic sys'ms

of the-formn

-(1.1.b)- -(U)_-Vy. (x,yV-U) )F ) y-Es ~U)ids~ , XEv

(L,-c) Bx,',U)- .' +-i(U(x7 Yt) -uxt)), 90, yE r.

~Here I is a domain-in WR~and fr each value of the macro-vable x E f isspcfd

a domain 11 with, boundary rPe. for -the. micro-vagiable Yc-E ~.Each ofa, b, /I- is

-a-maximal monotone -graph. These- graphs- are not necessarily -strictly increasing,

-they-may be-piecewise constant or.multi-valued, The elliptic oper ators in (1:1.a)-and_

:(...-are nonlinear in the gradient of degree- p-1 > 0-and-q - I > 0,- respectively,

with + > ! ,-so -some .specific degeneracy is--also permitted-1iere. Certain first
n - p

order spatial- derivatives can be Added- to (1.1.a,)- and -(1.1.b) with- no _diffi. ulty,

and. cor-responding problems with constraints, i.e., variational inequa.lities, can be

treated- similarly. A particular -example important for applications is -the linear

This work was supported by grants fromn the N ational Science Foundation and the Office of Navald
Resea rch.



constraint

(L.LCI) V(x,-y, t) u x -) -- r., x-

which then replaces (1.1.c). The system (1.1) with p(s)- - sl zIs is called- a

regularized micro-,structure model, and (J.1.a), . (1.1.c') is the corresponding

matched micro-.striuture model in which (formally) 6 -- 0. An example of such a

system as a model for the flow-ofa fluid (liquid or-gas) through a fractured medium

will-be given below. In such a context, (1.1.a) prescribes the flow on the global scale

of the -fissure system and (1.1.b) gives- the flow- c the microscale of the individual

cell at a specific point x in the fissure system. The transfer of fluid between the,

cells and surrounding medium is prescribed by (-1.1.c) or (1.1.c). A major objective

is to-accurately model this fluid exchange between the cells and- fissures.

The plan of this paper is as follows. In Section 2 we shall give the precise

description and resolution of the stationary problem in a variational formulation by

monotone opekators:from :Banach spaces to their duals. -In order to achieve this we

describe first therelevant Sobolev spaces, the continuous direct sums of these spaces,

and-the distributed trace-and constant functionals which occur in the system. The

operators are monotone functions or-multi-valued subgradientsand serve as models

for nonlinear elliptic equations in divergence form. We develop an abstract Green's

theorem to describe the resolution ofo the variational form-as the sum of a partial

differential equation and a complemenltary boundary operator. Then sufficient, con-

ditions of coerciVity type are given to assert the-existencefof generalized solutions

of the-variational equations. In Section- 3 we describe the restriction-of our system
to appropriate products of L' spaces. The Hilbert space case, r = 2, serves -_ot

oily as a convenient starting point but leads to the generalized accretive estimates

we-shall need for the singular case-of-(1.1) in which a or b is not only-nonlinear but

multi-valued. The stationary operator for (1.1)- is shown to be m-accretive in the

Li space, so -we obtain a generalized solution ii the sense of the nonlinear semi-

group theory for general Banach spaces. As an intcrmcdiatc step we shall show the

special case of a b = identity is resolved as a strong solution in every L r space.

2



1 < r <,oo,-and also-in appropriate dualSobolev spaces.

In-order to motivatethe system (1.1), let's consider the flow of a fluid through

a fissured-medium. This is assumed to -be a structure of porous and- permeable

blocks or cells which are separated from -each- other by a highly developed system

of fissures. The majority-of fluid-transport will occur along flow patls-through the

fissure system, and the relative volume of the cell structure is much larger than

that of the fissure system. There is assumed to--be no-direct flow between adjacent

cells, since-they are individually isolated by the-fissures, but the dynamics of the

flux exchanged between each cell and its surroundinggssuresis a major aspect of

the model. The distributed micro-structure models that we develop-here contain

explicitly- the local-geometry of the cell matrix at each point of the fissure system,

and they thereby reflect more accurately the flux exchange on the micro-scale of

the individual cells-across their intricate interface.

Let the flow region -S be a bounded domain- in R" with boundary r = afi. Let

p(x, t) and p(x, t) be the density- and pressure, respectively, at x E S1 and t > 0,

each being obtained by averaging-over an appropriately small neighborhood- of x.

At ach such x let there be- given-a cell 91, a bounded domain in Rn with smooth

boundary r , aQl. The collection of these 1 x E 1, is the distribution of blocks

or cells in the structure. Within each fl. there is fluid of density /(x, y, t) and

pressure-f(x, y, t), respectively, for y E 91z, t > 0. The conservation of fluid mass in

the fissure system- yields the global diffusion equation

(p + aop)-Epk x x(1.2.a) at e -=J :.- (~k (P~ 110 _ )

+ q(x, t)=-f(x, t), x EQ2

in which the total concentration p + ao(p) includes adsorption or capillary effects-

the function -kj gives -the permeability of the fissure system in the j'Ih coordinate

direction,- q(x,_t) is-the density of.mass flow of fluid into the cell n: at x, and f is

the density of fluid sources. Similarly we have within each cell

at O j D- j aj)3j=J



where b0 denotes adsorption or capillary effects and_ the function-k1 gives the local

cell permeability. Assume the.flux across the cell boundary is drivenwby the pressure

difference-and is also-proportional to theaverage density -on that pressure interval.

Thus, we have the interface condition

j= 1 .

where-i7 is--the unit outward normal-on -r, and g is-the relation -between the flux

across thef-interface aid the" density-Weighted pressure difference as--indicated. The

total mass flow iato the cell is given by

In order to complete the- dynamical system we need only to add a~boundary condi-

tion on T'to (1.2.a) and to postulate the state equation

(I.2.e) - p=s(p)

for the fluid in the fissure and 6ell systems. Here s- is a given monotone function

(or graph) -determined-by the fluid.

In order to place (1.2) in a more-convenient form, we introduce the monotone

function

S(w) js(r) dr

and the coriespondingflow potentials for the fluid in the fissures and cells

u =S(p) U = S ).

In these variables with a change of notation the system (1.2) can-be written in the

form (1.1) together with boundary conditions on r for u or A(Vu) - v and initial

conditions at t = 0 on a(u), b(U). Note that the average density on the pressure

interval p.F) is given by

=P u- U

- ~ s(r) dr

4



As an alternative to (1.2.c), we could require -that F)-- p on r. and this leads to

(1.1.c') in place of (1.1.c) Finally, we note that the classical Forchheimer-type

-corrections to the Darcy Law for fluids lead to the case p = q-= -3/2.

Systems of the form (1.1) were developed in[20], [21], [9] in-physical chemistry

as models for diffusion through a medium with a prescribed microstructure. Similar

-systems arose in soil science [4], [13] and in reservoir models for fractured media

[10], [15]. By homogenization methods-such systems are obtained as limits of exact

micro-scale models, and then the effective coefficients are computed explicitly from

-local material- properties [24], [161, [21. An existence-uniqueness theory for these

linear problems which exploits the strong parabolic structure of the -system was

-given in [23]. One can alternatively eliminate U and obtain a single-functional

differential equation for u in the simpler space L2 (fl), but the structure of the

equation then obstructs the optimal parabolic type results [17]. Also see [12] fora

nonlinear system with reaction-diffusion local effects.

2. The Variational Fofrmulation

We-begin by stating and resolving the stationary forms of our systems. Let f

be a bounded domain in lW with smooth boundary, r = OV. Let 1 < p < 00 and

denote by LP(Q1) the space of pt" power-integrable functions on 12, by LO*(12) the

essentially-bounded measurable functions, and the duality pairi ng by

(Uf) = u()f(z)dx u-E LP(f), f L

for any pair of conjugate powers, 1 + = 1. Let Co'( C) denote the-space of in-

finitely differentiable functions with compact support in-1. W m',P(I) is the Banach

space of functions in LP(12) for which each partial derivative up to order m belongs

to LP(f).), and iVo'P()- is the closure of GC0 0(a) inW=",P(). See Il-for information

on these Sobolev spaces. In addition, we shall be given for each x E SQ a bounded

domizn fli which lies locally on one side of its smooth boundary P-. Let 1 < q <c

andl denote by L V(-Qx) -- LI(I7r) the tracc map which assigns boundary val-

ties. LeL T, be the raiige of; this is a Banach space with the norm indured hy

5



7f from wl,q(2,,). Since P is smooth, there is a unit outward normal v,(s) at

each s E r,. Finally, we define Wt,q(n,)Ao be that closed subspace consisting of

those P E Wl'A(,2,) with -yp E IR, i.e., each -y,(o) is constant a.e. on r,. We shall:

denote'by Vy- the gradient on Wl'q(P-) and by V the gradient-on W"P(Q2).

'The essential construction to be used below is an example of a continuous

direct sum of Banach spaces. The special case that is adequate for our purposes.

can -be described as follows. Let S be a-measure space and consider the product

(measure) space Q = S × S, where £ has Lebesgue measure. If U E Lq(Q) then

from the Fubini theorem it follows that U(x)(z) = U(x, z), x E R, z E S defines

U(x) E Lq(S) at a.e. x E 0, and for each 4) E L (Q):

j (U~x, ~(x) L(S) x j~jU(x, z),b(x, z) dz} x=j

Q

Thus Lq(Q) is naturally Identified as a (closed) subspace -of Lq(Q,Lq(S)), the

Bochner q1h integrable.(equivalence classes of) functions from -to Lq(S). Suppose

X :41 --+ ]R is the characteristic function of a measurable SI., C t- and w E L9(S).

For each a >-O we have

{(Xj z) E X(x)w(z) < a} = . X {z E S: w(z) <a} U (~ n) x S

and-for a < 0 we delete the second term. Thus, X . w ismeasurable-on Q. It follows

that each measurable step function u = X -w, from Lq(fl, Le(S)), is~measurable

on Q, and hence, belongs to Lq(Q). This shows Le(Q) is dense in and therefore

equal to L(fl, Lq(S)).

In order to prescribe a measurable family of cells, {f9,, x E Q}, set S = R', let

Q C 91x IR?' be a given measurable-set, and set f l. {y E R :-(x, y) E Q). Each

is measurable in ]R" and -by zero-extension we identify Lq(Q) -- Lq( 2 X IV):

and each L (7+) q Lq(IR'). Thus we obtain from above

Lq(Q) {UE Ln Lqq(]Rn)) : U(x) Eq(n,) , a.e. x E Q

We shall denote-the duality on this Banach space by

(U,I,)L(Q) = j{j U(x)Y)(xy)dy) dx, U E L'9 (Q) , I L9 (Q).

6



The state space for our -problems will be the product L' (n) x L' (Q).

Note that gW,q(nj)is continupusly imbedded in Lq('2,), uniformly for x E-f.

It follows that the direct sum

Wq -Lq(slWi'(2)) - {U E Lq(Q) : U(x) E W'9(2) , a.e. xE 2

and j IIU(X)Il ,, dx < oo}

is a Banach space. We shall use a variety of such spaces which- can be constructed

in this manner. Moreover we shall assume that each n is a bounded domain in

-R' which lies -locally on one side of its -boundary, F, and r is a C2 -manifold of

dimension n- 1; We assume the trace mapsyj : .L~q(r) are-uniformly

bounded. Thus-for each U E Wq it follows that the distributed trace (U) defined

by -I(U)(x, s) = (,7x(U(x))(s), s E r., x E n, belongs to Lq(n, L(Px)). The

distributed trace y maps Wq onto T =V(SI, T,) --+ LV(Q, )).

Next consider the collection {W q(R,,) : x E-R} of Sobolev spaces given above

:and denote by W, = L( W )) the corresponding direct sum. Thus for

each U E W, it follows that the distributed trace y(U) belongs to Lq(SI). We

define W"'P to -be-the subSpace-of those U E W, for which 7 (U) E W0'P(R). Since

7: W, -- LZ($) is continuous, WO'm is complete with the norm

Il~lw ,,-IUll+117uw

This Banach space Wi' (S2) x Wq will be the energy space for the regularized prob-

lem (1.1) and W0'P will be the energy space for the coistrained -problem in which

(1.1.c) is replaced by the Dirichlet condition (1:1.c'). Note that W'_ is identified

with theclosed subspace {[7U, U] : U E W01' P} of W01'P(g2) x w. 4. Finally, we shall

let WO -denote the kernel of y, W0 = {U E Wq : yU = G-in T.}.

We have defined W to be the set of w E Wlq(Q )ifor which -yw is a

constant multiple of 1, the constant function equal to-one- on P. Thus ,V '9(S )

is the pre-image by 7 of the subspace IR.I, of T,. We specified the subspace W1

similarly as the subspace of Wq obtained as the pre-image by y of the subspace

7



L9(fl) of T.. To be precise, we denote by A the map of Lq(S2) int Tq given-~b

Av(x) = v(x)-. 1,;, a.e.- x E §2, v: E Lq(nT); X is an isomorphism of Lq( 2) onto a closed

subspace of Tq. The dual map A' taking T7' into L9'-(Q) is -given by

A'g(v) g(Av)=jgz(1.) v(x) dx, g E Tyv EL($2),

so-we have A'g(x) =g.(1.), a.e. x E fl. Moreover, when _g., E L' (r-) it follows

that

g~(1) = g(y) dy I

the integral-of the indi-cated boundary functional. Thus;forg E Lq' (n, Lq'(P,,))- c2;,,

A'g-E Lq'(S)iS given,-by

(2-1) A'g(x) =fgz(y)dy, a.e.- X-E n2.

The !imbeadingA of Lq(fl)_ into-T-.-and-its dual map A will play an essential role -in

our system below.

We consider elliptic differential operators in divergence -form as- realizations

of monotone operators from Banach spaces to their duals. Assume we are given

A :I x WR -4 ]IR' such that for some' 1 <p < oo,-gl E LP (fl), go E LI(SI), c and

co-> 0

(2.2-a) -~, )is--continu-ous in ~E _IRn and measurable in x, -and

(2.2.b) (A(x,) X (X,, -7t) > 0-

(2-2.c) A(x, >)~ coIC IP'- go(x)

for a.e. x E 2 and-all IE-R".

Then the -global diffusion- oper ator A: -1,VP(Q2) - 1P'(Q) is given -by

Au~v) = j A~x, u(;r)) '7v(x) dx, v
Au~v) ;I(X7u~vS



Thus,-each Au is equivalent to its restrictiomto C (Q), the-distribution

Au =AuIC,(n) = -v. A-,Vu)

which- specifies- the value of this nonlinear elliptic divergence operator.

In-order-to specify a collection -of local -diffusion operators, B" : Wl-9(Q)

assume we are given B -: Q x R ],R'- such that for some 1 <-q < 0o,

hi E L'(Q), 'h0 E L'(Q), c and- iCO >-0

-(2.3.a) B(x,y, ) is continuous in (E ] R and measurablein (x, y) EQ, and

:IB(~,~, )j < ljq-1 + h,(;,_y),

-(2.3.b)-(B(x, y, C- B(x, y, i'), 6- i) > o

(2.3.c) B(xy,.C). (X> cOq- -- ho(xy)

for a.e. .(x,y) E Q and-all ?I- E ]R'

Then -define for each x E n2

Szw(v) gx J) YWy)Y(~y W VE W 1 'q(n.

The elliptic differential perator on -11 is given tby the forfaizl part- of B,, -the dis-

tribution

in, W 6 i . Also, -we shall--denote by B : Wq Wq' the distributed-operator

constructedfrom the collection {B x'E .} by

BU(x) = B.(U(x)), a.e. x C-, U C W ,q

and we note that this is equivalent.to

BU(V) J B(U(x))V(x)d , UV Wq

The coupling term in our system will- be given as a monotone graph which is:a

subgradient operator. Thus, assume-m : R -4 is convex and bounded- by

(2-A) rn(s) < C(Qljs + 1). E IR,

9



hence, contintious. Then by

j jr(g (X, s)) ds dx , -g- E L (n , Lq(r,))-

we obtain the convex, continuous f: Lq(f, Lq(Pz)) - IR'. Assume I + > -so

that V'P(n), -4 lq(Sl), and consider the linear continuous maps

A :J'( ) q+L(2(P) Wy: Lq (Q,L9(r-)

Then the. composite function

M[u,U] =fi(tYU- Au), uwE WJ'"(n), U E W4,

is convex and continuous on W0'P(2) x Wq,. The subgradients are directly computed

by standard results,[ll]. Specifically, we have- E 8fin(g) if and only if

~(xs) O~g~~s) ,a.e. s CPr, .e, xESI

and we-have [f, F] E-aM[u, U] if and only if f = -A'(s)in W- ' (fZ) and F =

in W. for~some A &fi(-U - Au).

The following result gives-sufficient conditions for the .statioivary regularized

problem to be well-posed.

Proposition 1. Assume 1 <+ -+ , and-defihe the spaces and operators

A, -yas above. Sped fically, the sets {R, x .E:S} are-uniformly bouizded with smooth

boundaries, and the trace maps {yz}- are-uniformly bounded. Let theifunctions A, B,

and m satisfy (2.2), (2.3) (2.4), and assume in addition -that

(2.5) r(s) > colsi q , s E Ra

Then for each pair f E W-P'(Q), F E W4 there exists -asolution of

(2.6.a)- U C Wo'(f2): A(u) - A'(/.) = f in W' - '(fl)

(2.6.1b) U E Wq :1(U) + -t'(1j) = F in W,

(2.6.c) /t E L q'(ftLq'(r )) : #I E Ofi(jU - Au).
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Fjr-any suchi solution wve hlave

(2.7 14(z, s) ds = zi)1) t.e. x E_

where 1, -denotes -the -constant Unit function in _W1,q(% ).

Proof. The system-(2.6) -is a "pseudo-monotone plus -subgradient" operator equa-

tionl-of the-form

[u,UV]-E WJ'_W(fl) x -Wq : f~r all _[v, V] -E -WJ'P(_2) X Wq

Au(iv_) + IU(V) + 8M[u, U] ([v, v]) D f (v) + F(V).

It -remains -only- to verify a -coercivt odto aey

(2.8)' Au(u),+ BUT(U) ± ffi(-yU - - u--++0

as ]IIw.~)+IIw ~+00.

Chose k Xmx{I- yE 2,-E-g} tnd let v ..... , be the uni't-normal

on P.. For v -E Wlq(n.,)--we have -by Gau ss' Theorem

f(IVI' + YnqlVl'nv> = f n~(Yn'V(Y)l')-dy

= j ~ n-lyv.sl ds

H6lder's inequality then=-show

IIV~i~q( !!,) k IIy.,vIIl'p- + qkilvIllq-1 llanvilLq(nz

and from this folltowv

JIVIIqq(l.) i2kIzVIlqp + (2k q(q ~- II9nVIIlq()

by Young's inequality. Fromn lihewe obtain

(2.9) CO]IVlq,(Q) _< IIi Iqfjpy I~IL(Q) V E Wq
11-V~l7



Thu-s-from the a-priori estimate

.Au(u);+-t3U(U)' + MV(,U - Auv) >

(24Q); C0 I!I jP (fl) 9- oOL 1 (i) + CO IvyUtj, ,2 - II holItL 1(Q)

+CoIl-fU - AUIIq(qp) u -E VFO'P(n) ,U E Wq

thePoincar6-type- inequality- (2.9)- and the equivalence of -IIvull(n -with the norm

on W0
1-( ) we -can obtain the- coercivity -condition _(2.8). Specifically, if (2.8)- is

bounded--by K, -then (2.10) is -bounded above -by

K([lullwt.v(fl) + -IIVsiUIL9()+ flULq(n,Lq(r.)))

<K(ilIywiP(fl) + IIVjUIIL!CQ),+ It7fU AWIILM(f;Lq(r.)) + 11 UlILq(1)

and -the last term-is -dominated -by the first. this gives- an explicit bound on each-

of these terms and, 'hence, onjiIulwi~"(a) + lij~W'r

Finially, we-apply (2.6.b). to the function -V E 14 given-byV(X, y)-= v(x) -for
som vE ~(),ard this sows

since BU(V) = , and thus

j A(-x)v(X)-dx =--tt(Av) = s(Yu) ,>P(x)- 1)v(x)-dx.

The- identity -(2.7), now follows. from (2.4)-

r the more--general case-of the degenierate stationary prbe orsoding

to (Lf); we obtain--the following- result.

Corollary 1. Let Vy: IR --* ]R and 4b It WR be- convex and-continvous, with

= V(O) - iP(O) =0, and- assume

(2.11) y(S) C([sl + i l) <C~ , S-E JR



rehparfEI 'P-(f2)- F',E W4-, there-exists a solution of

E212a is "') -a- + A(u) - A'(gjp f in- W""'1(&Q)

(Z.12.b) U EWq -b-+L(U) +<1 (I) F in W'

(2;12.c) ps E-ai(-U - Au)- ia ~J~ ~ I.), and.

(2.12.d) a-E- Oso(u) in Lq'(1) 64(U) -in, LQ(Q).

For any such solution -we have

-_k2.13) ] b(x, y) dy +1 p ,s s: F4x ae

Proof. This follows-as above but, with the continuous ci'onvex -function-

_[U' U] _W j )(u(x,)) dx+ [ t '(U ydx+fni(-yU ) [u, UI -W,'P(&)-Wq-.

Thesubradentcanbecomrpute& termwiselbeca;useii-the -t trs are-continiuous

on, L(1) L (), dV(Z(P )) re:§7eCtively.

Remark. The lower bound (2.3) on m(-) may be deleted in -Corollary 1 if such

a lower estinmate- is kno',ii lto hold- for 4. It -is also, unnecessary in the m-atched

-microstructurelmodel; see. below.

In -order to prewcribe the boundary condition (1.1.c)- explicitly, develop

an- appropriate Green's formula forl-he operators BS_. -Note -that we can identify
Lq jC -W-1I'(q sInc Wi~q(gl,) idesin so- it is -me aningful to

define

Dz {w E W',q(f2.,)- B.,w- L

This is the -domain for the tabstract Gre en's Thteorem.

Lemma 1, There-is a: unique operat -rz :~ D - Tj for which -B. B.w=

for all v E D. That is, ive-have
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for every W E D .

Proof. The strict morphism 7Y of W'q(&2x) onto, Th as a dual -y7 which is an

isomorphism-of T" onto ' the annihilator in W,(P,,)I: of the kernellof

7- For each w G D, -the difference J3.w - B.w is-in W0I'(El ,--,so it is equal to

'L(8,w) for a unique-elemrent , 8w E T .

Remark. The identity (2,14) is a -eneraiized decomposition of B. into a partial

diffei ential operator on 9,. ".,'rnd a boundary condition- on r. If _r, is smooth, v

denotes the. unit outward normal on r, and if B(x,., Vyw) ? W , 'X(nz)]n, then

w E D, and from the classica] AGreen's Theorem we obtain

B,,w(v) ---(-Bmw,v)L~~ B(xj s, 'V1 wW(s)-7v(s) ds , v E Wl(.,

Thus, 0xtv- B(x, , w), , is. the indicated- normal derivative in- Lq'(ri- when

B(x, ., Vw) is as. smooth as above, and-so we can= regard 8,w in general -as an

extension of this nor.linear differential operator on the boundary.

The formal part .f-B: Wq - is tle operator B Wq -- W iv-n by the

restriction,B(U)- BUiwo. Since Wo is -dense in Lq(Q) we can specify the domnai

D {U Wq :(U)E 'I(Q)}

on which wx obtain as before a distributed form of Green's theorem.

Lemma 2. 'There is a unique operator a: D -T' such that

B(U)(v) = (B(), V)L(Q) + (8U, YV), U G D, V -- W .

Proposition 2. Let thc Sobolev spaces and trace operators be given-as above. Ile

14



summarize them -in the-following diagrams

Lq(n x) Lq( Lg(Q:L~,LqP)

U U: U U

U ALU t

U U U. T

w{o} wo I-q -{o}

in which-iyi is -the restriction of -- -toW1 -. ~W ~~W6,arxdense -in LqQ) L9(0))

respectively. Let operator B,, x E 2, and B be given and define: their formal parts

Bz, B as above. Then construct 'hes d.mains D-, D and boundary operators.O8, 8

as in Lemma 1 and-Lemma 2, ie.pectively. It follows that for .any U E Wq,

(a) BU(x) = Bz(U(x)) _in Wo(n)I for a.e. x E a, and U E D if and only if

U(x) E D for a.e. x ESI, and x t BU(x) belongsto,')

(b) for each Ue D,

au(x)- o(U(x)) an (i for a.. _ Q n

and

BU - BU +7,A'OVti) -in W',

and:for each V E Wi we-have-

j B~~x)V~x) dx= jBU(x)V(x) dy dx + f a-U(w),1 (7 V)(x) dx.

Proof. (a) For V E Wo we obtain from the definitions of B, B and Bx, respectively:

j1 U(x)V(x) dx J BU(V)-dx = jBU(x)(V(x))dx= B:U(x)V(x) dx.

and so the first equality holds since W' - ( The charactcrizat.ion

of D is immediate ,iow.
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(b) For V E Wq weobtaln from the-defintitions-of--y, 0, a., respectively, and (a)

A OU'(tV(x))-dx O U(TyV) dx = (BU - BU)(x)V(x) dx

Since the range of -y is Tq' L '(!t, T,,), the first equality follows. The second is

immediate from Lemma 2 since on W1, y = A o--y and -' = -y' A', and, the third

follows from the preceding remarks.

Corollary 2. In thae situation of Corollary 1, f E Lq'(92) and F'-E L'(Q) if and

pply if Au _E L ( ) and B(Uq) E L'_(Q), and in that case the solution satisfies

almost everywhere

a(x)-E-,(' & (:e)) , a(4)+ Au(x) 4 b(x, y) dy--- f(x)-+ j F(x, y) dy, x E Sl

U(s) 0,sE-r,

b(x,y) -N (U(x,'Y)), b(x, y) +-U(, y) F(x,),

(x,s) -E- m('U(, s)-u(X)) , -(U())(s)+( x,s) =o, s Er .

Finally, we note that corresponding results for -the stationary matched -mi-

crostructure model ate obtained directly by specializing the system (2.6') to the

space w This is identified with {[7U, U]: U E W"sP} as a subspace of Wo'P(R2) x

Wq, and we-need only to restrict the solution [it, U]_ and the test functions [v,-V],

v = -yV, to-this subspace to resolve the matched model. Then the coupling-term

M does not occur in the-system; see the proof of Proposition 1, especially for the

coercivity. These observatiohs yield the-following analogous results-for the matched

microstructure model.

Proposition 1'. Assume 1 < p, q,.! + 1 > .1, and define the spaces and operators

A, 7 as before. Let the functions A, B, and m satisfy (2.2), (2.3) and (2.4). Then

for each pair f -V ii ,P'(R), F E W'lthere exists a unique solution of

(2.15.a) tu E W4lJ 0 "(Q) A(U) = f + (F, 1) in .V'-l'( t)
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-(2.15.b). _U E W-1- B(U)-= F in _WO

(2.15.c)- -yU = Au in L7( I) C iT.

Corollary 1'. Suppose cp, 4 are given as before and assuine (2.1). For f, F as

-above-there exists a unique solution of

-(2.16.a), u WE W'l'():a + (b, 1) + A(u) = f + (F, 1) in- W-P'(n)

(2.16.b) U E W 1 : b+ B(U) = F in W01

(2.16.c) 7 U = Au in Lq( I) C=T,

(2.16.d) a E Ow(u) in. Lq'(11), b E &I(U) in- Lq'(Q).

In addition, f E Lg' (9t) and F E Lq (Q) if and only if Au E Lq' ( I) and B(U) E

L q'(Q),and inthat.case the solution satisfies almost everywhere

a(x) E Ow (u(x)), a(x) + Au(±) +,j b(z,-y) dy = f(x)-+ j F(x, y) dy , x E f,

u(s) =o s Er,

b(x,tF)EaP(U(X'Y) , b(x,y)+BU(x,y)=F(x3-y) Y 91f2,

U(X,s) = u(x), sE r,.

Remark. For the very special case of p = q > 2 and a(u) = u, b(U) = U in

-the situation of Proposition 1 it follows from [61 or [19] that the Cauchy-Diridilet

problem-for (1.1) is well-posed in the space LP(0,T; VOIP(SI) xW ) with appropriate

initial data u(x, 0), U(x, y, 0) and source functions f(x, t). F(x, y, t). A similar

remark holds in the case of Proposition 1' for the matched model with (1.1.c').

These restrictive assumptions -will be substantially relaxed in the next section.

Furthermore, variational inequalities may be resolved for problems correspond-

ing to either the regularized or the matched microstructure model by adding the

indicator function of a convex constraint-set to the-convex function 'It. Thus one can
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handle- such problems with constraints-on-he global variable u, -the local variables

U, or their difference Au -7U on the interface.

3. The Lr-Operators

Assume we are in the situation of Proposition 1. We define a-relation or multi-

valued- operator C2 on the Hilbert space L2(Q) x L2(Q) as follows: C2 [u, U] a [f, F1

if and only if
d

(3.1.a)- -u- V L() flw.'1("1) :A(u) - A'p = f E L 2 (!a)-

(3.1.b) U E L2 (Q) fhW : B(U) + 7'p = F E L2(Q)

for some y n Oi( 7 U Au) in L' c S r)).I

Thus, C2 is the restriction of (2.6) to L2(fI)-x L2 (Q): Note thatA 'p E L2(Q) by

(2.7).:

Lemma 3. If ! t -_ R is monotone, Lipschitz, and-a(O) =0, then for each pair

C2[uUjIj E) ffj,1Pj], j-= 1, 2,

there follows

(fi- f2, r(ul - u2))L 2(n) + (F, - F2, o(U- -U2)) L2 (Q) > 0

Proof. Since a is Lipschitz and o(O) = 0, we have ao(u 1 - u2) E Wo"P(11) and

a(Ul -_U 2) E Wq. Also the chin rule applies to these-functions,so we compute

(Au, - AU2, a(U1 ,u 2)) = J.{(X(x, VU) -AX0, VU2))V(,,, - U2).'(,U - U2) dx

(B,6V- I3,, o(U, - -,)) =

J~ x f_ ( V(!yUI) - B(x, y.V,U2 ))v 1 (Ui - U2 )o&(Ul - U2)-yd.-I



Both-of these-arc non-negativebecause of (2.1.b), (2.2.b) and a' >-O. The remaining

term-to check-is

(-A (I 1 - ,12), a(ul -- U2))L2(n) + (y('1 - ,u2), o(Ul - U2))

- f J(i i(X,5) A2(X, S)) (0oPfUI - 7fU2) - or(ul - Au')) -ds-dz

Since -a is a monotone function and Om is a monotone graph, this integrand is

non-negative and the result follows.

As a consequence of Lemma 3-with a(s) = s, the operator C2 is monotone on

the Hilbert space L2 ( ) x L2(Q). Moreover, we obtain the following.

Proposition 3. The operator C2 is maximal monotoneon L2 (fl) x L2(Q). Let

_ :R. -i R + be convex, lower-semi-continuous, and j(O) - 0. If 709 is a function,

then C2 is also single-valued and

(3.2) (C 2 [UI, U3] - C2 [U2, 12], 1d1'a2I)-L2(fI)XL2() > 0O

for any selections 01 E 9j(ul - u2) in L2 (11) and a'2 E Oj(Ul - 12) in L2 (Q).

Proof. To show C2 is maximal monotone it suffices to show that for any pair

[f,'F E L2(fl) x L2 (Q) there is a solutionof

(3.3.-a) u E L(a) n w.,() : u-+.A(u) - '(y) = i n w-1,'(Q)

(3.3.b) U E L 2(Q)n w, :u +B(U) +-'-(jt) = F in W.,

(3.3.-c) p E L,' (, L,'r)) : jEL 0I&(U - Au).

The existence of a (unique) solution of (3.3) follows as -in Proposition 1, but by

considering the pseudo-monotone operator [A,B] on the product space L2 (Q2) fl

VoiP(.) xl(Q)fWq and the convex function, hull L2 IU112  - -2 )111 II(,) IUlc+ff(-yU-Au).

on that space.

To establish the estimate (3.2), we consider the lower-semi-continuous convex

function

(.3.4) jfu j() U1 lU] E L7) x O(Q)
(U()) f (UX.))I#I-r19[i



The stibgradient of 5 is givcn on -this product space by

= lx, ad] E a3[u, U1 if and only if

6[v,V]= j (ci(x)v(x) + j o2 (x,y)V(x,y)dy -dx, [v,V] E L (fE) L2 (Q)),

where

01(x) E 9j(u(x)), a.e. x E SI, a2(X,y) E 8j(U(X,y)) , a.e. '(x,9)'EQ.

The Yoshida approximation J, of 5 is given as in (3.4) but with j replaced by j,.

-Since the derivative of jc is Lipschitz, monotone, and contains the origin, it follows

by'Lemma-3 that the special case: of (3.2)withj, is true; Thus, C2 is 85-monotone

[7] .and 'the desired result, follOws, since the single-valued C2 equals its minimal

section.

We define-the realization of (2.6) in-Lr(n) x L*(Q), 1 < r < oo, as follows. For
r >- 2, C, is the-restriction of C2 to Lr(f-) x L'(Q), andfor 1 < r < 2, Cr is the

closure'in Lr(II):x Lr(Q) of C2.

Corollary 3. The operator C, is-m-accretive in Lr(E) x Lr(Q) for 1 < <o.

Proof. Let (I + 6C2 )([uj,-Uj]) 3- [fj,F], j = 1,2, and assume [f ,Fj] E Lr(n2) X

-r(Q) if r > 2. Set I(s) -sl, s E IR. From Proposition 4.7 of [71 it follows that

I[U1 -U 2, Ul -02]JIL'(nmxL'(Q) -11[ V - f2, F1 F2111L'(a) x L"(Q) •

Taking ff2, FZ] [0, 01 we see that, L"(fL) x Lr(Q) is invariant under (I +-CC 2)-r,

and then the estimate shows this operator is a- contraction on that space. We

--have Rg(I + _C,_) = Lr(Q) x Lr(Q) directly from the definition for r > 2- and'for

1 < r < 2, Rg(I + CCr) D L2( j) x L2(Q), which is dense, so the result follows

easily.

Remarks. The Cauchy-Dirichlet problem for the regularized model (1.1-)is well-

posed in Lr(I)- x L"(Q) when a(u) = u, b(U) = U, and r > 1. This follows

-from Corollary 3 and the theory -of evolution equations generated by m-accretive
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operators ina uniformly convex Banach-space. For example, from [18] werecall the

-following:

if f E W 1" (0, T; X) and-wo E D(C,.), where C, is m-accretive on the-uniformly

convex Banaci space X, then there exists a unique Lipsdiitz -function

w: [0,T] - X for which

w'(t) + C,(w(t)) D f(t), a.e. t E (0,T)

w(t) E D(Cr) forall t E [0,T], and

w(O) =wo.

See [3] for details (Theorem III.2.3) and references. By applying this result to the
operator Cr given in X Lr(jj) x 17(Q), 1 < r < oo, we obtain a generalized

strong solition w(t)' [ii(t);U(t)]' of the system

+ Au(x, t)+ fauXxyt+

u(s,t) = 0, sCr,
aY7 (xy, ), -f)

1 (x, s, t) E am(u(x-,s, t) -u(x- t))-, 49.U(x,_s, t-),.+ ,(x,s, t) 0 , s EPr.

u(x,0-) = uo(x) ,U(x7 ,0)_=UO(X'Y)

The restrictions-on the dataff(t)-= [f(t), F(t)] and-w0 = [uo, Uo] can be considerably

relaxed in the Hilbert spacecaser4 = 2-[7].

By applying Proposition 1' similarly, it follows -that corresponding results for

the matched model are~obtained. Thus-one obtains a generalized -strong solution in-

Lr(n2)-x Lr(Q), 1 < r < oo, of the system
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Uxyt)+ U(x, t) = (x,Y, t) d X )+ -~, y, t)d 1, 0 )-

aU(x,,) 0 -~)

u atO + B U(x,y,) F (x, ).YEn

This follows as--above from-the analog of Proposition 3 and Corollary 3.

We return to consider the fully nonlinear -model (1.1). The -generator of this

evolution system will- be---obtained -by closing up the -composition -of C2 with the

ivreof [8 o, 68] -in L( )x L"(") Thus, we begin with the folowing.

Definition. C[a, b] - [f, F]if C2fu_, U] fF]adaEO()inL(),bE (

in L 2 (Q)-for some -pair [u,-U] as in- (3. 1).

LemmaC4 The-operator C is accrotive on_'(I x L (Q).if either Om-is a fuiiction

or -if -both 49 o and 8' axe-functions.

Proof. Let e > 0 and-suppose that (I + eC)[a,, b1] 3 Fj'~Jfo 1, 2. Thus we

have IEC2 [uj, Uy].3 Dffj -a 1 ,F - bj], a, E 8Op(uj), b, E a'Z)(Uj) as-above. First we

choose u(s)--=sgni+(s), thie Yoshi-da approximiation of the- maximal. monotone sgn+ ,

apply Lemma-3 and- obtain

(a, - a2, sgn (ul U2)2(? + (4 1 - b2 , sgn+ (Ui -U2))-L2 (Q)

11 hI)f - 1 f2IL () + 11(Fi -P)11V(A

If v -and are functions,-then

(a,= - 2) SgPn±(U_ I 'U2 -=a2)--"

(bi- - b2 ) sgn'(U1 - -U2 )-= (bi b2)+

so -letting 6 -b 0-~gives

(3.6) II(ai -c2)+ IlL' (n)+Il -b2)IIL1(Q jj l(f1 -f2)+IIL'1 ) +D(F- -)IILI (Q)
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The same holds-for negative-parts, so itfollowsthat (I+et)"' is an order-preserving

contraction with-respect to L'-( l)-x L1 (Q) for each c >-O.

Next -we suppose 9in is-a function. Choose j(s) -- s+ , -so.-that, aj = sgn+, and

then set

U1()= sgno+(U I - U2 + a, - a2) E sgn+ (u I - U2 ) ni sgn+-(ai - a2 )-,

0i(x, y) = -sgno-(Ux -'U2 +-bi - b2)- E sgn: (U1 - U2) fl sgn+(bl - b2)-

Proposition 3-appishrtogv (3,5). A -similar estimate for negative parts -yields

the-result.

Although-C is notaccretlve on.L' for I. < r, ,we can obtainL' estimates when

the-graphs 8,O 8, are- not too dissimilar.

Co-rollary 4. If (I + eC)a, b] E -[f, FJwt :,ten

where k =---max(a-'(j (f+jILo), bW'(j[F~jj)) -

Remarks. He--e a0 is--the minimal section (aW~, ~ is the minimnal-section 6f

OW) -and bo , b-' are- defined simpilarly from. &4'. -Specifically, we-obtain- an ex-

plicit a-priori bound -on Ija~jIL_(p)- -and IJjb~II eQ) when I~+loc)E R(OWp)-
and IIF+Iji,co(Q E- Rg(8' ). 'By simhilar-estimates- for negative-parts, we obtain-ex-

plicit estimates on IjaI-L_(fj)_and IjbIL-(Q) ,for arny pair f E L'EL(q)'

if Rg((9o_) = JR and Rg(O )_ = JR or (trivially)- if -both Rg(8cp) and Rg(D&D) are

bounded-in R. Finally, we-note, that in the-~special- case-V-=,P we obtain

Proof. By the-choice-of k >;-O. we-hbave

O~p(k)-E el -5-jjf+jj-0 , ) & k) ?e, > +I~Ic
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for some pair £ 1, 2 . Subtract -these from 'theoperator equation, multiply -byeither

sgn+(u - k) , sgn+(-U k)-

or by

sgnh(a - e+u -k) , sgnj+(b- t2 + U -k)

depending on whether 89o and O are functions or am is a function, respectively.

Apply Lemma 3-and let 5 --v0 or apply Proposition-3, respectively, to obtbin

Il@ -~ £1)+IL1( )Z+ I1(b - e2)+IIlI(Q) <11(f + - I1)1zILI(n) + II(F+ -1£2)'p-I-(Q)

The right side -is- zero, so the result follows.

Proposition 4. -(Moser) Let (t., U) - x Wq be a sol(xution to

.A(u) - Ali f in WL'_(il),

B(U)+ 'It F in W

1) If (f,F) _e Lr' () x L' (Q) with-r"> and

(2.2.c' ): (, .. _ o~ -g(

where-go E Lr'(f2), then wuE -LOO(SI).

2) If, additionally, F E L'[; V'(f - r) with, t' >

(2.3.c) B(X, y, '-#> -co161q - hd-(x,)

where-ho E L-°;L'(Q4)], and m-satlsfies the growth condition(.5) and m(O)--0,

thenU -E LOO(Q).

Proof.

1) Estimate (2.7)- of Proposition 1 shows that, A'p/ E LT (n), so-hat,

A(u) =f = !EL LT(Q)2
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Lemma -3 of [221 -can now be- used -to conclude u E Lc?(-Q).

2) Define UJ = U -ul. Since B(U) = B(U),-it folloN' s that

B(U) + uF in "W, -jE Om(-yU),

and Lor Almostevery x E11Q, and every V E YWq

(*) j (x;.,~,(x)) ;V V(x) + f (y(=j F(x, )~)

with p(x) E 19M(-YUJ(x)). We now-us-e Moser iteration with (*)-to conclude IU(X)Ioc)$
C, where- C is- to be -chosen -independently of x -E-I.

If UF(x) E Lr(Q2.)-(r =qsuffices- fok- the -first iterate), define s = I + t:

= t 1). Let -H E C' (R), satisfy H(s )_- 1sj if I1t_<.so,-H affine for IsI > so, and

define G(s)_ = f (' ()I d6_ -Since )I has linear growth- it follows that -G(U) e Wq.

Substituting G(U)- for V in -* gives

The first-term of th -above is-bounded belo using (2.8.'.T ~inaetescn

term, use

(i) _10U > mn(UJ)-(as m(0) =- 0),-and-

(ii) :sgn(UF) =-sgn(G(C&)) -(so thatG(U)/U > 0-when-UO. 0),

-to get

puG(U) jzU G(U)/U > m(U)-G(U)/U

Co ]VU~~!(U +CO ]U iiGU)1 JFG(U) ± h0G'(U)

The first term may be written as IV H(fU-)Iq which, using the Sobolev embedding

-theorem, is~ bounded-ielowv by

"q_ Iii(UJ)l
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where -s > 0 can be chosen arbitrarily- small (see equation (2.9,)). The- right -hand

side is bounded using H6lder's-inequality.

c(e-)IIH(U)Ijj' nq + f U19-l-jG(U)j -j(_)'

tiOX U)1 (I. + IjhoIIlt 11)11G(U)IL'(SMx
CO

when- so-- - oo, H(U)- - 11, and-.~IF (U- t~rJ~, her (~ 3

~(1 + ' )9. If Ps is -chosen as e = minq<r<oo-?(r) -it--follows that

The result -now. follows by- iteration -of- the-above- estimate..

'Thebreaw1. Assume -the hypotheses of Proposition- I,- Corollary1 Lemma-4, n

Propostion 4. Also assume-that R§g(aW) and Rg(M-) are both -bounded or -that

both- are equal to JR. Ten C~, th lsr fCin L1 ( ) x L'(Q-), is-m-accretive.

Proo. Lt fE L( 2>nd~F'~ L (Q_). Corotlr i asserts-there is a solution of

(2.12). If the-graphs-00-and- Ok have-bounded ratnge, then a E 4k-"( 2), b E -L"-(Q),

and- it follows from Proposition 4 -that u -E L (a2) and -U E LQ) This- shows

C'2 [U, U] D [a - f, b - F], so (I + C)([a,-b]) E) [f, F]. Thus, Rg(I + C) is dense in

and, hneqatoL'( 2) x L'(Q).

If the-ranges-of VOp-and' 8$ equal JR, then -by Corollary 4-any solution satisfies

jjaII o(nl)- K IjbI-L _(Q) < K,

-where If depends- on fand- F. Replace -8 , &<Vby the appropriately -truncated-

cr WPK, abK-h ouiwWt hs'rncated. graphs-then is a- solution of the _equa-

tion wvith -the original graphs, so-we-are done.

Corollary 5. -Under -the hypotheses of Theorem -,problem: -(l1) has a unique

generalized solution (a-, b) E C00, T; L' ( 2) x L'(Q)], provided the data, sa tisf

(f, F) E L' 0, T; L'(f1)x L' (Q)], and-~(0), b(0))-E D(C).

26



Thi. followstfrom- the Crandall-Liggett Theocernf8], which is-proved-by showing

that the step functions, (aN, b")-, iconstructed irom- solutions-,to--the -differencing

scheme

(3.7) (a nb -)- ()---,,(a +rC(a',La,"):) -r(f', F n)z-

(7r =- .);convrerge uniformly when the operator-C is rn-accretive. Ben'ilan [51]roe
that these generalized- solutions are unique.

All-of our-results -hold for the -matched- microstructure-imodel problem. Specif-

ically, Lemma 4 and:'Corollary 4 are obtained from Propositioni 3, and Proposi-

tion 4 is -actually simpler for the matched problem. The analogs of Theorem 1 and

Corollary -5- show that the-matched problem (.a,(1.b,(1.1.c') has-a unique

ge neralized -solution (4a,b-) C -C[O,T;VL(R2) x L1 (Q)].

The-next -theorem- shows- that -if the- data -is further restricted? the generalized

soluton -will satisfy the partial differential, equation- (1.1).- The following -notation

is-u-sed,

Lr(T) - Lr[O, T;r( j) -x LT(Q)] 1 <00 o

V = W4,'(f)- x Wq

V(T) = LP-[0, T;-Wj'P$) x Lq [, T;-WI],

V(T) - W P" [0, T; TV' ( W) 4 q 0 T; w '!

Theorem 2. Assum-e the hypotheses of Theorem 1- and-in addition- that (f,,F) E

12-(T)_fl-V(T)' and (a(0), b(0)) E -D(C) fl V'. Then the generalized -solutions of

CorollarY 5 -satisfy

(3.8.a)(a, b) (T) , (u, U)-EV()

(3.-8.b)- (a,-b) + (A(u-) - A'1i, B(U) + -61t =f F) -in V(T)'

(3.8.c) (a, b) E _(OO(U), 04(6)) ,-y C Offi(Au - 7 U) .

Proof. The results of G range and. TMingot [14] show that the step- functions (al". b"')

an~d-(un", UA") generated from the differencing-scheznc-(3.7) convcrgc weakly in lNT)
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and V(!T). respectively. Mot, ver, equation (3.8) will be satisfied in the limit, pro-

videdthe weak limits (a, b) and (u, U) satisfy (a,,b) E (0(u), 8&])(U)). To establish,

this inclusion, let (v, V) E V(T) and (Zb) , (¢(v), 8I(Y)). The growth condi.

tions on 0 and I- guarantee that (aN, bN)-.and (i, b) E V(T)' are-functions, so it is

possible-to define' (aN - Z, bN - ), to be the pair of functions truncated above and

below-by ±s (s > 0). This pair of functions is bounded in L'(T) and converges in

L(T)to (a-a, b-b),, so converges in Lr(-T) for 1 < r < o. If r >-max(p',q'), it,

follows that Lr(T) C V(T)', so the sequence (aN -a, bN - b), converges strongly

in V(T)'-. The monotonicity of 00 and-alimply

0 <((aN' ",-b N , (U N -V, U' n v))

Passing to .the lii-iit as N -*00, and then letting s - oo yields

0-< ((a-a- b-b), (u-v, U-v)) , (a,cb) E (8q.(v), M(V))

Since (aO(.), aP(.))-is maximally monotone,it follows that (a, b) E (O¢(u),&OI(U)). I

Finally, we note that the- corresponding solution of the matched problem sat-

isfies

(3.8.a') (a,.b) E V(T)-,. ('U, U)_E V(T),

(3.8.b')'-  -(a,-b)+ (.A(!U), (U))=(f,F) in Vo0(T)'

(3.8.c') (a, b) E (O(7U), a'L(U)) , U o

where -the:space Vo(T)=is given-by

Vq(T)- {U E L 9[,T;Wlj :--(U) E LP[0,T;WP(2]

with -the appropriate norm for which (-f(U),_U) E V(T) -for each U E Vo(T).
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Diffusion in -a Fissured Medium
with Mi'cro-Structure-

R.E. -SHOWALTER*

Department of -Mathematics
The ~niversity of Texas at- Austin

Austin, Texas 787112

The work described below, was done-with-N.J.Walkington of Carnegie-

Mellon-V~niversity. -We establish that the Cauchy-Dirichlet problem -for

degenerate parabolic systemsiof-the-formi

(LI:a) a(u):- V.A(X,Vt) g (x~s 1 ).~s ~ xE~

-is well-posed. Hferell-is a-domain -in II and for-each value of-the macro-

variable x Efl is specified a domain Ox wit -boundary r.. for the micro-

variable- Y E -11. -Each of a, b, A -is a- maximnal- monotone graph. These

graphs are not necesisarily s trictly increasing; t hey ixay be piecewise con-

stant or-multi-value-d. The elliptic-operators -in-(L~a) and (1.b) are non-

linear in the-gradient of degree- p - 1 > -0 and q -1 > 0, resp ectively,

with + ~ ,so some speci fic degeneracy -is-also-permitted here. 'Cer-

tain-first order-spatial -derivatives can-be-add~d to (L-a) and- (1.15) with no

difficulty, -and corresponding problems- with -constiInts,~. vaiinal

inequalities, daii b~e treated' simhilarly. A particular example important -for

SThis work was supported by grants from the National Science Foundation and the
Office -of Naval Research.



A-

applications is the linear constraint

which then replaces (;1.c). The system (I)- with-j4.s) -J SIq- 2s is called

a regularized micro-structure model, and- (1.a), (L.b), (1.c')-is the corre-

sponding matched micro-structure model in which -(formally) e --+ 0. An

example of such a system is:a model for the flow-of a fluid (liquid or gas)

through a fractured medium. In sticha coitext, -(La) prescribes the flow

on the global scale of the fissure system- and (1.b) gives the- flow on the

microscale-of the individual cel-at a specific point-zin the fissure system.

The transfer of fluid-:between the cells and surrounding medium is. pre-

scribed by (1.c) or (1.'). A major objective is-to accurately model this

fluid exchange between the cells-and fissures.

Systems of the form (1)- were developed in [10], [11], [3] in physial

-chemistry as models for diffusion through a-medium with-a prescribed

microstructure. Similar systems arose in soil science 12], [6] and-in reservoir

models for fractured' media [41, [7]. By homogenization methods such
Systems are obtained as limits of exact micro-scale models, -and then-the

effective cdefficients-are computed explicitly fromlocal material properties

-[13], [8], [1]. An existence-uniqueness theory for these linear problems

which exploits the strong parabolic structure of the system- was given in

[12]. One can alternatively eliminate U and- obtain a single functional

differential equation for u in the-simpler space L2 (q), but the structure-of

the equation then obstructs the optimal parabolic type results [9]. Also

see [5] for a nonlinear system with .reaction-diffusion local effects.

We-begin by stating and resolving the stationary forms of our systems.

Denote by -y, : W4'(IZI) - Lq(r,3 ) the trace map which assigns boundary

values. Let Tr be the range of -yz; this is a Banach- space-with the-norm

induced by -y from -W'4(( 1 ) . Since 1', is smooth, there is-a unit outward
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normal zJs) at =eachs E F1. We shall denote by Vy the gradient on

1WV,q(f2,)-and by V the gradient on IV'lP( ).

In order to prescribe a- measUrable family of cells, { . ,x E f2}, let

Q C i x R'" be a, given measurable setoand set fl- {y-EW : (x,y) E

Q). Each- 41 is measurable in R and by zero-extension we identify

Lg(Q)-- L9(f x Rn)-and each LV((W) -- L (Rn). Thus-we obtain-from

above

L9(Q) t-- {U E L9(S1,L(Rn)) : U¢=) E L911,) , a.e.- x E f}.

We- shall denote the duality on this Banach space by

(Ui-§)L(Q) -fi J~ ~ y4(xjyd dx U E Li'(Q)-, 4w E L"'(Q).

The state space for our problems-will be the-product L (11) x L' (Q).

Note that W'A(fl,)-is continuously imbedded in L'(St.), uniformly

for x-E Rt. It follows that the direct sum
W,--- Lir(0, W "CSlz)) =U- E, P(Q) : u(x) -E W9,,), a.e. x E-_11

-and IIU(x)liI,., dx-< oo}

is a Banach-space. We use- a variety of such spaces which can be con-

structed in this manner. The Banach space WO, PP )x W, willbe the en-

ergy space-for the regularized problem (1). We assume the trace-maps -y:

W1'9(f.)- -+ Lg(P) are uniformly bounded. Thus-for each U E -, it-fol-

lows-that the distributed trace -7 (U) defined by 7(U)(x,s) - (-,(U(x))(s),

s E r., x E R, belongs to LP(SiPL(r)). The distributed trace -y maps

W. onto-T-- L9(11 T

Denote by X the map of L'(11) into T given by Au(x) = v(+)- 1, a.e.

x E _ v E L(fl); A is-an isomorphism of Lq(Q) onto a closed subspace of

T.. Tne dual map ' taking 7 into '(0t) is given-by

A'gq(V) = g(\v) j, gI,)-()v(x)dz, g E-7, TV'vEL(),
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so we, have -A'g(x) =:g-(t), a.e. X E ..

We consider elliptic differential, operators in divergehce-form as-real-

izations of monotone operators from Banach spaces to their duals. The

global diffusion olerator A: ;WO"(?) -- W-1 ,P'(Q) is given-by

Au(v) X(jr('u())v(x)_dX ,,V E W

Similarly-define for each x EAfR

B.w(v) = §(wVv E WI)dy 1)

Also, we shall denote by B : W9 -- W the distributed operator -con-

structed- from the collection {B. z E fl}- by

BU(x) = wUz), ae. xE fl, UE Wq-,

and we- note that this is equivalent to

BU(V) J" V U, V E W.

The-coupling term in our-system will be given as a monotone graph

which is a subgradient operator. Thus, assumem R - - R is convex,

continuous and bounded by:C(Islj + 1). Then by

T(M JrJr (g(zxs) do4d, 19("Pr)

we obtain-the convex, continuousr-: L'(fI,,L9(P)) - .

For the case of the degenerate stationaey problem corresponding- to

-(1), we-obtain the~following result.

'Let qcr: R ----R + and- 4§:1 -4 -R+ be convex and continuous- with

sV(O) = 4(0) = ,-and assume

V(S)'__ C(lSl' + i) f (S) < C(ISl + 1)-, R J.
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=For each pair fe IFV"P,(?), F C- WAhere-exists a solution-of

(2.a) u E ar"PP 4+ A41f) -A(p) =finIY '(

-(2b) - E W : b+B(POO+ y(,U)--F in

(2.c) ,p E-0finyu- -Au) in Lq'~,~'P) 4nd

--(2.d): -a E &pV(u) -in- Lq'() ,b E,_814(U) in, Lq'(Q,)

For any suh s6lutiome xav

f b(x, y) dy +J pxsds (F ),),.ae x

Next -we restrict -our -system to appropriate products of -1 spaces.

The Hilbert space case, r =2, :serves riot-only as a, convenient mstartin-g

-point but leaids to-th6-e eiealized accretive-estimates we shall need for the

singular-case of (1) in-which-a or-b-is-not only nonlinear-but multi-valued..

Thestatioilary-operator-for (1) is shown to-be6 m-accretive in'the LV space,

to we-obtain a- generalized solution -in-the sense of the-nonlinear-seinigroup

theory -for -general- Banach -spaces. As -an intermediate step we show the

special case of a = b = identity-is resolved as a strong- solution in every

L'~ space, 1 <r- < oo, -and- also in-appropriate -dual- Sobolev spaces.
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NODAL SUPERCONVERGENCE AND SOLUTION ENHANCEMENT FOR A
CLASS OF FINITE-ELEMENT AND FINITE-DIFFERENCE METHODS*

R. J. MAcKINNONt AND G. F, CAREYt

Abstract. A class of finite-element methods for elliptic problems is shown to exhibit nodal superconver.
gence in the approximate solution, and some equivalence properties to familiar finite-difference operators
are demonstrated. The superconvergince property is exploited-in a Taylor series analysis to demonstrate

Gauss-point superconvergence for the derivatives of the approximation. A post-piocessing formula for the
derivative at the nodes is constructed and shown to exhibit superconvergence. The nodal superconvergence
property can be exploited recursively tofurher enhance the finite-element or-finite-difference solution.
Supporting numerical studies are given.

Key words. finite element, finite:difference, superconvergence, post.processing
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1. Introduction. In this note we consider a Galerkin finite-element approximation
of the Dirichlet-problem for-the equation Lu==f in-12. Here fl is a union of rectangular
subdomains, L is a second-order elliptic differential operator with smooth coefficients,
and u is assumed to'be sufficiently smooth; By introducing an appropriate integration
rule for-element quadrature-we show that tbe Galerkin approximation uh, defined on
a-square mesh of piecewise bilinear elements, is equivalent-to a familiar finite-difference
approximation ofu. Discrete-uniform error estimates for this difference-alproxirhation
are knoin (Bramble and Hubbard [1]). These estimates imply that difference quotients
of the error have the same order of- convergence as the error itself; i.e., 0(h2 ) for the
bilinear-element. It follows that this-nodal-superconvergence property-holds for the-
standard-Galerkin approximation with higher;order (or-full) integration. We use this
result to -prove new-superconvergence results and show how simple and accurate
superconvergefit post-processing formulas for the solution and derivatives can be
derived -using Taylor- series-expansions. Although the formulation andy analysis pre-
sentedhere-is for problems in-two dimensions, the results apply.-to -prblems in one
dimension as well, and extend directly to-three-dinmensions.

2. Formulation and analysis.
2.1. Nodal'solution superconvergence: Consider the boundary value:problem

Of \ of au)1
(-U [ ( L -a (a2) -+ blu+b 2 u).+ocu=f(1)Lu - ax a x] ay _ady. ]

in the unit square fl - (0, 1)x (0, 1)-with Dirichlet data

(2) u=g on ail.

Here we assume that a,lb, c, and f are smooth, and L is uniformly elliptic in 1
The Galerkin finite-element approximation to(-) is defined tobe u,, Eq__-1h, satisfying

the essential boundary condition, and such-that

(3) B(u,,, Vh) =(f, vh)

* Received by the editors December 16, 1987; accepted for-publication (in revised form) June-7, 1988.
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for-all vs H c H'(f1), where-(., ) is-the LF(fl) inner product and B(.,.-) is the

bilinear functional

(4) -B(w, q1) =f [a1wxix+ a2 wy y+(bw+'b2wy+cw)1P3 dxdy.

-Now consider a-uniform -partition-of-'i into-square elements of size h-and take
H"(it) to be spanried~by -C0°iecewise-bilinear-functions defined On this partition.

Approximating the integrals in -(3) by asuitableintegration rule applied over each
element, we-get the approximation Bh(uh, Vh) =(f, Vh)h for-all ph e Hh. The-resulting
algebraic system is

(5) _BhUh = fh

where the precise forms-of Bh-and fh depend on-the particular integration rule used.
For clarity of exposition, let us firstconsider:the case Where coefficients a, b, and

c are-constants, and a-(2 x 2) trapezoidal integration rule is-used to-evaluate-integrals
in (3). Accordingly, evaluating the coefficients in (5), for typical interior node point i
at(,.y, y)with:test function vhi, we obtain

Bh( uh,-) = -{a 1 [Uh(X1+ h; yi) -2UhC(X, Yl) + Uh(x 1 - h, ye)]

(6)- + a2[uh (xi, yj + h) - 2Uh (Xi, Y) + Uh (Xi, yj - h)]})

+h [uh (xi +h, y) - u, (xi - h, y)]
2

+ h- [Uh(X , y,+ h) - uh(xi, y - h)]+ cu,(x,, yi)hI
2--

and
(7)- (f, Vh)h- fxh yi)h2.

For this case; we -seefrom (6)-and (7)-that (5) is equivalent-to the five-point central
difference approximation to-(1).

Bramble-and Hubbard [1] h-ave shown that, for a solution-u-of (1)-having bounded
fifth derivatives, the gridpoint error e, = u(x, Yi) - Uh(X, y) for the fivepoint difference
approximation satisfies

(8)- = (xi, y,)h 2 + R(xj,,y, h )h'

where 0 ha:Lipschiti-continuous second derivatives, and R is uniformly bounded in
xi,y, and h. -It follows-from (8) that the- solution to this finite-element problem (5)
has-gridpoint errors of-order O(h 2 ). It should be emphasized that-this estimate is a
gridpoint result for the discrete problem, and is-of-the same order as the global L2
estimate usually encountered in -finite-element theory.

Remark. If the domain discretization error is zero (as assumed here),-then it
follows directly from the proof in Bramble and Hubbard that-max ,., IR(x, y, h)-1 Ch,
constant C, so-the finalterm in:(8) is actually 0(h 4 ).

In (8) -- is the solution to the auxiliary problem
(9) L4, =--r(u) in fl;

4=0 on afl

with -'the truncation error. In:particular,

(10) -Bh(u, vh) -h2Lu(xi, y) + h i(u) + O(h')



SUPERCONVERGENCE AND ENHANCEMENT 345

where r (u) denotes- (u) evaluated at interior gridpoint (xi, y,). For -trapezoidal-
integration'- (u)- corresponding to (6) is

(11): 1(u) = -i2 ' a2uyyy-2(blux+b2uyy,)].

According to (10), the discrete approximation given in (6) and (7) has local truncation
errors, of order -O(h). On- dividing-by h , we see -that the differential- operator is
approximated to a local accuracy-of order O(h2 ). Even-if a more accurate-quadratuie
scheme is-used-for integrating (3), O(h4) truncation errors remain. Their precise forms
depend onthe-integration rule used. It follows that the estimate in (8) gives the best
possible rate for the nodal solution-error irrespective-of the-increase in- quadrature
accuracy.

This conclusion also holds for the case of smooth variable coefficientsi since 'heir
variations only introduce 0(h4) truncation errors. (See the Appendix-for an example.)

2.2. Derivative superconvergence points. Consider first the problem of- derivative
calculation from the bilinear finite-element nodal interpolant ul of u. Simply differen-
tiating the-expansionon element%, we have

4

(12) u(g 9) = Y UJ4j(, .9)
J-I

where uj.are the interpolated nodal values for f1,,-qOj are the element basis functions,
and-4, 9 is an arbitrary point in the element.

Next, we introduce Taylor serie, expansions-for us= u(xj, y)aboutx =R, y =9-
with_85 -=-x -1, 8j'=yj-y to obtain

uJ u(xy)-(,) + u (9, Po)' + iQ(3, 8
(13)-

+_.u. (9, Y)(67)'/12! + uy.(, (9 )(q) /2! + u.( g, Y)8' &jSj + ...

-Using (13) in the right side-of (12) and regrouping terms, we-have,

_7 ' - 12!-,' <8; .z,
(14)

-[ Jj,1  (y)2] F 42!j.1 . 'i8 y] a.,+0(h2)
i-i

where for- notational convenience il = u(9, 9), 0x =-,(-, 9.), '' = 4j(9, 9), and so on.
A similar expression holds for -iy.

Now-the derivative of-the approximate solution uh-at9, 9 in £flis

4

(15) ,,x= Z Uhj tjx.
J-I

Subtracting (15) from (14):yields the error in the derivative

= ej-I- -~ 4 (8)1 x

(-

When we -td -] er+ oha

When we -introduce -nodal- estimate (8) for ej and use-the-fact that derivatives and
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hence-difference quotients-ofl -are bounded, the:first term on the right-in (16)- satisfies

4,, ej =0 (h ).

This implies that (-16) will be-an 0(h?) approxirnafion, -provided the -remaining -first-
*order-terms- are zero or collectively cancel. On examination, we find- that coefficienits

.o z -nd~ 7 ar zr-for all1 i, in-ii., but the coefficient o- Fil, is zero-for all i -with
I= (xl +x 2)/2. Thberefore, -u, is superconvergent-on the -line bisecting-the horizontal

sides-of-fl,. Similarly, 1 yis 0b(h 2 ) along the-line--bisecting vertical sides of 11,.-Hence,
the-centroid (Gauss point)-is the superconvergent -point for-both Uhx-and Uhy.

2.3. :Nodal derivative extraction. Now consider-the calculation-of derivatives -(flux
components, stresses) at interior node-.point x1,-yi. For a -solution- u- of (1) having
sufficient smoothness in the interior of fl1, Bramble and Hubbard (1] prove the following
estimate- for the equivalent-finite-difference scheme:

(17) ID'he(xi, yI)I _5c[Ieflh+ 0(h2 )]

where D" is an- nth order -difference quotient- having 0(4z) -truncation -error,- C,,is a
constant-independent of -h,-and jeln, -_ iax.,,, je(x,, yi)I. F or the problem considered
here we-have, according to (8),

Iejn, = 0(h 2),

Thus, 17) becomes

(18) jDh"e (-xi, yi)I W.C1

This result can now_-be used-,to deriVe-a supercoifvergena aproximation -for- the -flux
components-aiu .,a2uy-(and& henice dcrivatives if-desired) at node point x1, yi.

A-Taylor series expansion-for u(xi w- hi, yj) about-(x1,y ) yields

(19) a1 u.(xi,-yi)-= 1 [u(xi, yi) - u(xi - h, y*)]- -h-aIu.(j yj) + 0(hP).
h- 2

Replacing -aju ,,( ,yj)-in (19) ,using differential equation -(I) )and -then initroducing-the
- following difference -formulas -for-a1., uj-y and&(a~u,.)y

a~x(Xj,) =a 1(x,, y&-) a1(x - h,-y)-
aj,,(xj -y+0 (h),

U (-i,-y _ (iy) i (xi- h )+ 0 (h),
_ y1 -h)

ux3  + uxy+hux, +0(h 2),)
2h:

-(a2(Xi, y, + h) + a2(X,, Y-
(a2,(1,-Y)- 2P2  - [u(x,,yj+h)-u(x,y)]

-(a2(x, yj) + a2(X[,-yt - h))- uxy)ux~jh]0h)
2h 2 uxy)-xy,-h]+0h,
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We-obtain

(a I(xi, yl) + a I(xI - hi, YE)
a, x~i, I)2h - u(xi, y)- u(xi -h, A)

(a&(x, yi +1h)+ a2(.th Yi))-+ _'4h [-U(x, yi.+h) -ut(xE, yi)]

(aj(x-,Y1) + a2(X1, - - h))-

+-b [uf(xi, ye)-- u(x, - h, y,)] +- [u(x1, y1 + h) - u(x1, y, - h)]-
2 4

+ c- it(XI, y -- hf(xE, yi) + 6(h2).
2 2

Note--that (20) is an 0(h2 ) difference formula -involving -nodal Values =of'the- exact
solution u. On introducing the finite-element approximation Uh for u on-the right in-
(20); we define the -approximation -for aluu,(x A~

S =(qi(x 1, y1):+ al(x, h y1))_
2hX*X'Y) [uh(xE,-y,) - uh(xi - h, y,)]

+0(2Nx, y, + h) +a 2(X1, yX)+4i uh ( xi, y + h) -Uh ( X, YM~

-(2) h uhxy-[u(x,y,-h( ]

k1[hXE, y,)-u&1x-h,y1+ 4

chh
_+ u,'x 1, y,)-+f(x 1. YE).

Subtracting (21) from,-(20) and using (18), we find that (21)-is a superconvegent C')
flux approximation.-(For a related study of derivative approximations see-MacKinnon
and-Carey-[5].)

Finally,-let-us use-this result to-analyze a-finite-element -projection technique for
-flux'post-processing. Thiis technique'is based on the integration-by-parts procedure in
the finite-element integral statement, from -which we-definie the-projection-relationship
for- ap4:X

(22) 11 aluv,, ds-= Lf _(01Uhxvix +a2UhyVhEy + (b VUh + CUh-D)VhE)-dx dy

where Sl is defined by element sides connecting gridpoints (Xi, yi - Ai), (xi, yE), (xi, y(+ h)
and 0,, represents- the two-element patch defined -by gridpoints (x, -- ha, ye), -(xi, yE),
(xE, yE + h), (-xi - h, YE + h), (xi, y, - h), (xi - h- Yi - h). This approach has been examinfed
in-one dimension by Whee ler [6], Dupont [4], and -Carey- [2]. -In two-dimensional
numerical test cases the method has been demonstrated to yield an 0(h 2 ) approximation-
to the nodal flux-when a, u*is assumed to be piecewise-constant over SE (Carey, Chow,
and Seager-{3]). Indeed, if--we integrate- (21)- using the trapezoidal rule, as-described
in-the:Appendix, then the resulting- discrete formula for a,u*5 is identical to (21). This
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-then confirms the observed numerical-convergefnce rate of O(h 2). If:a more accurate
4uadrature-scheme is used to evaluate (22), the resulting difference formula-As, in
general,.different from_(21). However, a simple Taylor series analysis confirms-that
-the formula is O(h 2) accurate.

3. Nodal-solution enhancement. In this section we apply the results obtained in
-the foregoing analysis and formulate a new scheme to compute an accurate approxima-
tion e* to-the- gridpoint error el = u(xi, yj) - Uh(Xi, yi). This approximation may~then
be used to-improve uh-and, moreover, increase the asymptotic rate of convergence of

-uh and its -derivatives. We point out-that although the formulation presented here is
for problems in two-dimensions, it-includes the-one-dimensional case by simply setting
y-derivatives -equal to-zero.

In the interest of clarity, we restrict our analysis to the constant coefficient case
describedby -(6)."(11); The extension to other cases involving different quadrature
schemes and variable coefficients-is straightforward in view of our previous results.

First recall (10) and (11):

(10) B(u, vh6 ) = h2Lu(xi, yj)-+ h4'r(u)+ O(h),

-(-11) T(U) = - i[au u..aX+ a 2uyyy- 2(b, u. +b 2uyy,)].

Now 'rom estimate (18); since u, is O(h 2
) accurate at the-node points,,any nth-order

difference quotient D1of uh also converges to-the exact value Dnu ata rate of O(h 2).
TherefQre, a tany interior node point i, 7(u) can-be rewritten using difference quotients
Dhuh as

(3 (u)=- 1
1
2[ajDh 1u ,+a 2DO,0Uh - 2(bhDhxiuh-+ b2Dyit1 h)] +-O(h 2)

T'hT(Uh)+ O(h 2).

-(Note that since the-fifth derivatives-of u-are assumed bounded- then Ti(u)-at--node
.points on boundary.Ofl can also be approximated to O(h 2) accuracy-by simply using
-an O(h 2) extrapolatioi-to the boundary.)

Next,-interpolate the nodal values -(u)-in the piecewise-bilinear.basis as
N

-(24) (u) r 7j(u)Oj(x,y)+O(h; )
j-I

where N is-the number of node points.
Introducing (23) in:(24), we have

N
(25) (U) = h ¢,(Uh)qj(Xy)+ och2).

i,-I

Replacing ri(u)-in (10):using (25), we have

(26) B(u, vh6 ) = h2 Lu(x, yi) + h 4,I( Uh)+O(h6).

Using-(26) in place of (10),:the estimate:(8) now has the form

(27) e = 4,*(X,, yj)h 2+:R*(x, y,, h)h3

Where (k* satisfies the-auxiliary problem
N

-_LO ='*/h(Uh)-- Z "rhj(Uh)4P(x,Y) in fl,
-(2 8 ) 

- I

0*=0 on-Ofl.
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The objective now is to-construct a finite-element approximation 0* to ,*-in (28),
and then use this approximation in.the leading term on the right of (28)-to obtain an
accurate cofrection-to the nodal solution.

First,-let us assume that we-have already computed:u h from(5) using LU fac-
torization and have saved the computed matrix- factors. The Galerkin:finite-element
approximation to (28) is as-follows. Find 4* e Hh such-that

(29) B(O*, Vh) = (Th(Un), vh)

for all- Vh H h C HO. As before, if we evaluate integrals in (29) using the (2x2)
trapezoidalintegration- rulewe get

(30) Bh6* =,r(uh)h
2

where ThA(U) is defined in-(23) and Bh(44*, Vhf) is-analogous to-(6).
Since the matrix factorization of Bh is-already given from the previous calculation

of uA, the approximate function -o* in (30)-can be computed efficiently once TI(Uh)
are computed (for the Dirichlet problem -Ti(uh): is needed at interior points only);
Th(uh)is easily computed using one-dimensional difference formulas. For example,
we-may write

k+l dn 1- n .

e' u= I ou(fj)+O(h+ )
(31) -nk ,,)=-Du u+O(hk+ k) kan, =x,y

where u(j)_-are node point values of function u; and 't,' are Lagrange polynomial
shape functions of degree.k_ In particular, for a second-order (0(h2)) approximation
to d4u/dx4, n=4 and-k=5. Note-that (31) can-be used.to approximate d4u/dx4 at
interior nodes near'the boundary. For this case (31) is simply -a-one-sided difference
formula involving interior-node point values-of u- only.

Solution- 4* from (30) will approximate 04* with accuracy 0(hP) at all-.node
points, whereyp depends on the smoothness of solution uto (1): Note-that T in (24)
is C' in view of the assumptions on u. Moreover, ih in-(28) is CO by construction so
p*:C 2 and:= 1. Replaci0g c* in-(28) with 0*, we have

(32) e* = h*(x, yi)h2 + R*(x,, y,.h)h+ O(h2 +)
= ,P*hh2 + 0(h 2+P)

since -R* is O(h).
This important-result implies that We-can compute node point errors e* having

at-least O(h 3 ) accuracy, and O(ht) accuracy (p =2) for-sufficiently smooth solution.
An immediate consequence of this result is that we can also increase the accuracy of
our approximation-uh (and its derivatives, if desired) from O(h -2) to at least O(h3).
Thatr is, the enhanced gridpoint value obtained--by adding the-nodal correction e*
becomes

(33) U1I Uh,+ e*.

The solution-enhancement procedure may be summarized as follows:
(1) Solve the finite-element problem BhUh = fG using sparse LU factorization and

save matrix~factors.
(2) "Process" approximation-uh- and form associated vector "rh(Uh). Then,-using

matrix factors of Bh, solve-auxiliary problem B * ='r ,h(Uh).
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(3) Compute-approximate node point-error correct-ion

-ei= OV-(ti, y1)h2

and--hence the- "enhanced" -solution

0u hi= eAI+.
3.1. Numericall examples. -Numerical-test, studies hav-been made to demonstrate

the-effectiveness-9of the nodal-enhancemn-ent- post-proc -essing procedure. (For results
- related- to the application of -post-processing derivative formula -(22) and -related

formulas,we refer-the reader to Carey [23,-Carey, Chow, and Seager-[3], and-MacKin-
;non -and Carey [5].)

In-the first test case we consider the-two-point boundary valueproblem

-u+ U.,+ f, 0 < X<l1
(34) uO=.()

where f is constructed, such -that the analytic solution is-u x(l -x)(4 +x) 5.
-We take a sequence of uniform mesh refinements with-h = 1, -L,-L-, and -. Num eri-

cal- integration-is-performed- using the-trapezoidal rule,-and derivatives u, and u,
-in-vrare approximated to order 0(h') and 0(h 2 ) , respectively, -by- six-point difference
formulas. A six-point formula for u,. was used because it is -computational ly convenient
to-sim-ply d 4iffereniate- this- fo rbu la and use-the result to -approximate ux,,.

-Nde point errors El, E ,cfbe approximations uhi and enhancement-ut are presented-
in-Table 1. Note-the substantial increase-in-accuracy and asymptotic- rates of conver-
gence afforded -by-the enhancement procedure.

-Next -we examine -three- approximations-to u, at-x -l. These -approximations -are:
the-standard 0(h), derivative -approximation- uhx; the- post-processed derivative u*X
given -by (21);- anid the-enhance--d derivative~denoted- by-u** -and given by -an- 0(h')
six-point differen-ce formula operating on enhanced solution u"'. Resul1ts-are-presented
in Table 2. Appro'ximations z-,*-and ut-' are- Q9X (h2)_and--0(h 4 ) accurate as predicted.

TABLE I-

Node point errors E(x,), EV(x) for (he cave b =1

hi- E(0.2)- E*(0.2) E(0;4) E(0.4) E(0.6)- E*(O.6) E(0.8) E(0.8)

3 0.085004 - 0.016524 0.161265 0.010216 0.200329 -0.009952 -0.162612 -0.015906
S 0.021283 :0.204E-3 0.040342 0.598E-3 -0.050081 --0.724E-3 0.040634- -0.389E-3
S 0.005323 -0.27E-4 0.010087 0.51E-4 -0.012520- -0.61E-4 0.010157- 0.46E-4
S 0.001330. -0.18E-5 0.002521- 0.33E-5 0,0031301 -0.40E-5 0.0025391 0.31c.-S

-0(h') -0(h 4) -(h 2) -0(h4 ) .-0(h')- -0(h') -0( 2) -O(h)

TABLE- 2

Derivatives uh,, u*. arid-u**ag x - . -The exact derivative is RJ(I) =-32.0.

h luXuIT hJ ku%- U.l Iu-~

3 -14.303480- -34.933828 -31.476970 17.69652 2.933 828 0.5230300-
16 -22.034701 -32.736437- -31.982434 - 9.965299 0.7364370:- 0.0175660
'5 -26.716385- -32.184295 -31.99958 3 5.283615 0.1842950 0.417 E- 3
S -29.280084 -32.046085 -31.999975 2.719916 0.0460850- 0.25E-4-

-0(h) -0(h 2)_ -0(h 4)
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As-a two-dimensional test pOroblem- we take the-example

(u.,+-yy) =(2-42x5 )(y-y 7 ) -42y 5 (X2 -_X7 )_ in fl (0, 1) x-(0, 1)

-With-

-(35) u= 0 on-afl.

The analytic solution is the polynomial

(36) u =(x 2 - 7) (y y7).

Node-point results for-a sequence of calculations- on- uniformly-refin -ed meshes of
h = !,L and--L are-given in-Tables-3-5. Again, the observed-rates of convergence
corroborate our analysis.

Conc- lusion. By a suitable choice of-quadra-ture rule-the finite-element approxima-
tion for a two-dimensional elliptic problem -has been- related- to a familiar -finite-
difference approximation. Nodal superconvergence of the solution then-follows from
an estimate of finite-difference theory. Moreover, any-nth order difference approxima-
tion-having Taylor ser -ies truncation error of 0(h2 )-at-a node- point- converges to the-
exact-value at a-,rate of-0(h'). Therefore, accurate derivative -extracti on- formulas can
be derived.-directly using Taylor- series -ideas.

TABLE 3

Node point-errors-E(x,),-E*(x)-along x =0.8.

h- _E(0.8, 02 .,0.2) E(0.8;0.4) E*(0.8. 0O4) IEtO.8, 0.6) E*(0.8, 0.6) E(0.8, 0.8) JE*0.S. 0.8)

-0.012138 -0.004074 0.023837 0.005127 -0.032477 0.006333 0.030038 I0.006824
~' 0.003102 0.40E 4 0.006087 0.60OE-4 A0008275 -0.80E-4- 0.007625 j0.93E-4

-'~0.346E-3 -0.2-6_ 0.680E -3 0.3E-6 0.924E-3 - 0.4E-6 -0.850E--3 0.4E-6
0(h2)1 -0(h') -0(h 2) -0(h') [0(h 2 ) - -(h4) -0(h 2) -0(0')

TABLE 4

Node point errors E(xj), E!(x,) along y=O .8.

h E(0.2,Q.8) -E(0.2,0.8)- E(0.4,0.8) E(0.4,-0.8)- E(0.6,0.8)- J E(0.6, 0.8)-

S 0.007514 -0.003668 -0.017644 -0.003680 0.028428 0.005004
id --0.001982 0.21E-4 0.004496 0.22E-4 0.007233 0.482-4

-0.214E-3 0.2E-6 0,502E-3 0.42-6 -0.807E-3 0.SE-6
-0(h2 ) -0(h 4) -0(h 2)- -0(h4) -0(h 2) -0(0')

TABLE- 5
-Derivatives u,, u*, and u** at (x, y) (0.8 -0.8). The-exact derivative is u.,(0.8- 0.8) =-0.1387215.

j 0.282010 -0.405757 -0.155165 0.420731 0.267035- 0.016443
'd 0.137307 -0.208948 -0.139683, 0.276028 -0.070227 0.9612E- 3
I -0.0310355- -0.146723- -0.138726 0.107686 0.008001 0.42-5

-0(h) -0(hP) -0(h 4)
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We emphasize that since- this- Taylor series -approach- rclies- only on elementary
analysis concepts, it isstraightforward to understan d-and implement. Furthermore,
although this-isrflot taken up here, the- method-can-be easily applied to higher-order
elements and -problems -in- three dimensions. Also, -derivatives can be extracted -from
finite-diflerencei-solutions in the sam -e manner.

Finally, using the truncation error-in-an auxiliary-problem the nodal superconver-
gence property-can-be-further exploited -to-enhance-the gridpoint solutioni accuracy.
These results are of practical significance- in solution and derivative-post-processing
and- also-for a posteriori error analysis i-n conjunction with adaptive refinement. The
adaptive refinement-aspects -will be taken up in future studies.

Appendix. Trapezoidal -rule and- variable coefficients. For -the case of variable
coefficients and-trapezoidal~integration,-we have-fromn (3) at interior gridpoint

(1.1- B(uh, VA) =fhl-

where

a (x ,, y) + a (xi , y)
BhUhV&=- - 2 h -- __ [uh( x,~, y)-uh( x,,Y)

+aj(xj,YE ) + a(x,,- Yi) [AXY )-U(EY)
2h

a2(Xii y,) + a2(X,, .v. - h) [hXy)-U(E V
2h- J

+h- (xE,-YE)uh(xE+h,-y,)-u U(x E-h, Y01]
2

+ h- ( ,Yg)[uh( XE, j'+h)- uh(xI,-y,-h))+c(XE, Y)u,(x,yi)h'
2

and

(1.3) fht =f(x1 , yj)h2

For-a smooth-function w,.anfd using Taylor's -theorem,

(1.4) B(w, VA,) = h2 LWw, y,) + h 47Tj(W) + 0(h")

where

7-(w) = -- IL[al w..x+ aI,,w..+ aX.w,+ djv

(1)+ a wyy + a2, wy.,+ a2,yw,., + a2y,wy. - 2(b, w.,,,+ b, wf).)]

From (1.4) and (1.5) -we see-that variable coefficients- produce additional- 0(h")
terms in . Hence,-the accuracy of (1.1)-remains 0(h2) and the results demonstrated
for the constant- coefficient ease extend directly to the case-of variable coefficients.
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Superconvergence in Semilinear
Problems
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Superconvergence- error estimates are established for a class-of semilinear.problems
defined by a-linear elliptic -operator-with a nonlinear forcing term. The analysis is
for rectangular biquadratic elements, and we prove supeiconvergence of the de-
rivative componen s -along -associated lines through- the Gauss-points.- Derivative
postprocessing formula andtformulas for integrals-are-alsoconsidered and similaT
superconvergerde.esti mates proven.

1. INTRODUCTION

In-recent years, much -effort has been focused on superconvergence phe-
nomena in the numerical solution of differential equations. In the- context
of finite element methods, it was observed that under certain conditions-
the Convergence rate-at specific points or-along specific lines is higher than-
the global convergence rate of the approximations. These phenomena:may
occur naturally or "artificially" from postprocessing procedures. For linear
problems, an- extensive review on- superconvergence may be found in-the
paper by-K~iek and Neittaanmiiki [1]. For nonlinear problems, few results'
are available, even though numerical.evidence strongly suggests that most
of the results for-the linear- problems may-be carried over to-reasonably-wel-
behaved Enonlinear problems. (See Chow and Lazaro-v [2], Wheeler and
Carey [3], and Carey et al. [4].)
In. this paper, we identify a class of semilinear problems for which

many superconvergence results remain valid. IIn particular, by restricting
oursdlves to biquadratic elements-for-simplicity, we establish superconver-
gence of approximate derivative components along-lines thro-igh the Gauss
points and superconvergence of the gradient at the Gauss points. We also
prove-superconvergence of the. boundaryflux and linearfunctionals ;ob-
tained from certain postprocessing procedures.

The standard notational-conventions forzSobolev and Hilbert :spaces -are
employed-(e.g., see Showalter -[15]). -For a given domain fl,. the Sobolev-

*Please -address correspondence to :Dr. G. F.-Carey, Department of Aerospace
Engineering and Engineering Mechanics, -University of Texas at Austin,- Austin,
T-X 78712-1085.

Numerical-Methods for-Partial Differential Equations, q, 245-259,(1991)
©1991-John-Wiley & Sons, Inc. CCC 0749-159X/91/030245-15504.00
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space Wk-P(fl), k-= ~JO+1, ±2,.. .},p-G -[, oo], is equipped-with -the usual
norm If.nand semninorm 1-1A.,n. We- shal-omit theiidexp-whtyp =2
and-write H' for Wk. and H- for _Hj(fI).- the -subspace -of-H-'(fl) -with ele-
ments vanishing on the boundary-of fl. Since .the -distinction- should be
clear from-the context, we use (-, )+to defiote-hnththeL_2(fj)-inner- prduct
and the H (2) x Hol(fl) -duaility- pairing.

For the present superconvergence analysis, we restrict, -the- domain fi
throughout-to be a-subdomain of R2 conslisting of a-union-6f-rect,angles with
sides parallel to the coordinate axes an-d'Iet-Ofl denote-the-bounidary. We
specifically constder the class-of semilinear -boundary value problems de-
fined by

Lu au (p(x y)2LuAA f(u)- in-11
oyA -'ay.

U='0;_ on-

where (i) a, 13are uniformly' Lipschitz continuous -ifi;l (i a 3aenm
formly bounded above and below-by-somepo-_sitive constA nts c-1 a'd co, re-
spectively; (iii) f(u) is. a -monotonically- decre:wing Lipschit7- continuous
function of u E R such that for alli',w in A;

[fw) - fAV), W - v]- I - I (2)1

with y > 0; and (i v) for allI v, w i n H,- there -ex ists a constantv8 -- 0 such- t hat

C0lW - VI- y/Ilw - VjI I -Sf "_j1, (3)

Using the Gre-Gauss -identities, the corresponding weak steuiento
eqs. (1) and (2)-becomes: Find ue-Efsuch-that

a(uv) = r-f(u),vl for all v-ce H, (4)-

where ~u ~ a., fna.,~ ara- [ dxdy. Under the- assump.ions- (i)-(iv)
following eq. (I),--it is easy-to Verify -that- the- energy -functionia! associated:
with a(u, v) iststrictly convex, and, thus the-existence and--ur dhfess of-t'e
weak solutiont to the variational problem (4) is -guaranteed.

To construct- the -finite el ement spaces, we -first partition (2 wilth -rectarn
gular elements whose sides are-parallel-to the coordinate--axes. VWezassume
that-this discretization-Th is regular [6], with--the paramieter-h-deno-tinig the
maximum diameter of the -elements in Th, and satisfies,-the -inverse ,hv-
pothesis hmin Ch (throughout this-paper,-C-is taken as~a generic conz-ant
and- is- independent of-h). Introducing- a- local -polvnomnial-basis-of degree- k
on each- element -and imposing continuity across element boundairies, we
define the standard--C 0 Lagrange piecewise-polynomnial finie eleen
space-Sh C H'(fl).-Let S' denote the subspace of functions-in Sh th t van-
ish on afl. The finite element approximation-u,, ER A o-eq (4)is obt inet.
by solving

a(uh, vh) = (f(uh), vh) for all -vh -in SOL (5)
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IlUsiig-the idea of an: elliptic -projection-operator P'on H -definedfby-

a(u - Pu,v,) = 0 forallvh in S'096)

Noor and--Whiteman -[7] showed -that the global- energy error estimates 'for
the finite~element approximation of degree k defined-by eq~z(5) are similar
to-those-obtained from- standard finite ellement -theory for -linear -problems,

JJU - UhIII :5 ChIJuI&+i- (7
These global estimates are-,optimaL. However, for -linear problemfs, it has
been observed in practice that the finite- element solutions may achieve-a
higher order of accuracy O(hk±I)-in the-gradient at certain-Gauss points.
F6tslfnear~problems in-one dimension -t his- problem, aswelLas nodal-conver-
gence-of the solution, -has -been extensively investigated. In-two dimensions
this- property for the derivative- -was shown to hold- by OQganesjan and
Ruhovecj8$] and'A ndreev and Lazarov f9-for Ji-near and quadratic triangu-
lar. elements, respectively, and'by -Zl~mal_ [10, 11]-and -Lesaint-and Zlimal-
[12]'for quadrilateral- elements.

In nunerical stufdies-by-Ewing arid Wheeler -[13]:anctEwing-et- al., [14]; -it-
'was o6bser;Ved that the respective component- derivatives exhibit supercori-
vergence~behavior along Gaussian -lines.-MacKinnon and Carey (15] used. a-
Taylor-series analysis -to prove--this -result and-further superconvergence
propertiesi Superconvergence along Gauss lines has also--recently -been
demonstrated by-Ewing et aL [16]-for the mixed -method.- It-is of interestto-
see if tht.;e naturally occurring su cn ene phenomen -are also pres-
-ent for the semilinear-problenis (1)--(2). Chow and Lazarov [2] and=Wheeler
and-Carey-[3] have performned related studies for-the--one-difiensi6na1 noni-
linear problem 1-ere, we consider the two-odimensional -case and biquadratic
elements (k =2).

Appropriate postprocessing techniques -can-also -be introduced -to yield
superconvergent-results. For -example, after -the--finite-eleme6nt appioxima-
tion-is obtained,an approximate flux-function may be computed-from this
solution- using -the -integration by parts formula_(e.g., see-Carey-et al. f4]).
More specifically,-recall-Ithat--the true-normal flux q is-defined on-afl by

au- auq =a--n 1 + f3-n 2 ,-
ax ay-

where-(n1 ,I 2 )" is the outward normal on-Ofl, and, by-virtue of -the- Greeni-
-Gauss identities,- that- q- satisfies the- equation

(qv) = a(uv) - (ffu),v) -forall*v ER H'(fl), _(8)

-where

(q, v) fq v ds.

Thus, an approximate-f lux qh may be Qtainedby solving

( =,V, a'U,,Vh) - (fk'uh),vh)- for all Vh Ei S-. (9)
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-Note that -for-conve -nience-we have neglected the-effect of-niumerical'inte-
grationin--eq. (9). The-approximate boundary fluxcthus computed is-super-
-convergent. This result has been proved for linear triangles by Lazarov
et -al. [17-land will -be- shown -toc-hold for- quadrilateral elements in the next

-section. A related-result is given by Douglas et al. [18]. Averaging deriva-
tives between elements can-also produce. superconvergent- results (see-[15]).

Another -postprocessing- application arises in- the evaluation of-integrals
such as

F =- F(u) = updx, -(10)

-where u is-the weak solution-of-eq. (4) and 41 is-a~sufficiently- smooth func-

-tion. An; obvious approximation to eq. -(10) is then

F,, - -F(u,,) ='I Ml dx.

Wit th ai ofa negative norm estimate, we show -thdt F,, is-a superconv-
-gent-approximation: to-. -(For--related -work,:-see [20].)

:2,.SUPERCONVERGENCE AT GAUSS- POINTS-AN'D ALONG
GAUSSIAN LINES'

As most-of the- calculations- are -carried, out- over the reference -element
-~= -1,1 x -,], let us first consider. thet rasformation- of an element

e t -and'the corresponding--chang6 of the bilinearfform a(-,;). Suppose-e-is
an lemnt n 7,, ithcenerixYdi). -the side parallel- to -the x axis is§ of

ilength he -and the- side parallel -to -the y-.axis -is of-length ki, then -apon
(-x,y) in e is§-relatedtto corresponding-point ( ei~n i teiermp

X (i) x0 + Lh4, y y(4:,i)- yo+ -k, 77. (12)

Any-function v' v(x, y)-defined on e may then -bextransformned as a func-
tion P= vfx(4:,i7), y(4:,q)] and analyzed--on- '.Due- to -the -restrictions -im-
posed- on- the -discretization of fl, the Jacobian is constant on-each element
with-J, =!- k Moreover, since there- are no- mixed derivative -ternis-in
the-original differential equation -(1), we-see that

ar u Ov Ou-Ov
a(u,v) a + JP a ~-+f-- dx dy

=~~~~~~y a(f yd:~ +f- 4d)

Let G denote the set of all--images of Gauss points (±V3-13, ±V//3)
through'the mapping (12) to the rectangles in the discretization. We-.now
show- that, under apporae reuaiy assumptions on u, superconver-
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;gencd in the finite eleffent approkimatiow for the comiponents of the gradi-
-ent occurs along-coordinate linies through th~& image-points.

Lemmlaa1. Let-u E- H-(fl), thdn for any V, E= .S,

ja(y- - uJ,vh)l :5 Ch3(u13 + 1U14)lvhlI i (14)

where u, is- the -finite- element interpolant of u-in Sh0.

Proof. The-proof follows closely that of Zlinial [10]:- Note that we -have
not imposed any-boundary- condition on-vh and'only seminorms- appear on
the right-hand side.

We-see-from eq. (13)-that we-may estimate a(u- " ul,vk) term-by term. By
evaluating -the- coefficient & at-the centroid an-d-taking this as c-onstant- on
an-element, we may simplify, the- ifitegral~erms. This implies that on-setting

&0= (0, 0), we-have -to estimate

ffa~ ~ I~d~d

-(15)

Where

L (U^) ff -(a^-7 12 ) - Phd

Now a is niformlyLipschitz- continuous, so a6 - 0 11 n
hence we may bound the first term on -the--right-hand -side of eq. (15) -by
CI~j. 00-A -11 U~IiVhI,;. From standard- approximation- -theory, we have
Ia - -a, I1i - Claj3.;; applying this- result and transforming -back to-the
original-element e, we have-the -bound

fJ(&&0) (14 d O~d -h 3,ej~hII (16)
ff g---

To -estimate L (4) we- observe--that -for Vh fixed, L, is-a bounded linear
fuctoalonz-eH 4 ~ s-La) -CIUIivhl~.Mreover, note that-if U^

were a-cubic polynomial on j then since 0Ph0 lis a-linear polynomial-of f,
~we would have L1(ai) =-0O. (We-only heed-to check the-,cases a-=g and
it -= 77'.). Then, according -to the Bramble-H-ilbert lemma [6], -we may -re-
place- the norm on- a -by- a- seminorm to yield

Combining- estimates (16) and (17) in eq.-(15),

(ca(a^_ - 1) Ohl,jja7 - ~ CA +'k 4 14,,)IVhll,e. 18
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ln-a similar fashion we may obtain the same bound for -terms -involving 77
derivatives. thus we have

- a(a -10 1 _Z ;Ch3 (UI 3,e +'I~il4.e)jVhlI.,
e

as stated.

From -Lemma- I, we may derive- various global -s-uperconvergence results
relating the finiite- element -approximation Uh, the-Anterpoiant- u, of u in o,
and the elliptic- projection Pit of- u-in'Sh.

Leinm i 2. Let-i C- H 4(fl)-be the-solution of-eq. (4). Then

HI'il- U4z1I :: Ch'jIII 4- (19)

and-

Proof. From~eqs.(4)_and (5),,we nave for Alliyh-in S'0

Ia(Uh -U001) :5 Ia(y - uI,vh)I + j(f(Uh) - f(U),Vh)I.-

Using Lemma 1 arid- the Lipschitz property of f-we~get

la(Uh - 4I,Vh )1 :5 Ci3(113 + IU14)IvhI, + C1U - VhIIOIIVIlO-
:5 ,W111"hl -(21)

where we- have assumned -the g-blL-erretiae5i4 ihI Ch'1I1uII 3
for-the finite-elei-nent-approxiiiiation. This is the standard fesult for the lin-
edar-problem- and-also holds for t he-semil inear problem, as seen -in--Section-4
using-negative-norm estimates.

'Finally, noting that 11h 01eS and' that -d(-, ) is- H-ellirtic, we set
Vh := U - U1 to obtain the estimate in eq. (19).

To- see -that the estimate (20) holds, we -first--show that Ilit u, <1111:

Ch'(1U13 + 1u14). -Now -a(u - u1,vh) =_a(Pu- - -u,-vh)-for all vi, in S', so -by
Lemma 1 we-have-Ia(Pu -uI,v-~J :5-Ch(UI3 + 11114)II-j 1Again observing
that Pu - u, is in- 0 we set vh-" = Pu -u, and-niake use of the ---elliptic-
-ity-of a(, )-to obtain the desired-bound. The-estimate (20) then follows eas-
ily by-applying the- triangle -inequality.I

The -above lemma iiiuicates -that both -the -tinite element apprpximation-
of-u and the elliptic projection-of-u- ate exceptio nally close to- the inter-
polant of u. As-we shall see in,-the -next theorems, the-derivacives of the
interpolant are exceptionally close to those of thesolution at-Gauss points
and along- Gauss -lines. This-canl be-used to-th en show the derivative-super-
convergence property- of the -finite -element approximation.
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Theorem.-1. Let-it CS HIMf), then the-arithmnetic-m-ean

A Z jU(Xg - V~g(X)[,-(22)

where N~g denotes the -total number of -Gauss points xg. e G, g- = 1,
2,.... N6, is-bounded by

A 5 GCh11U11 4,- (23)-

or, equivalently,

h ~j(U Uh) (Xg)j " Ch3'JIU14. '(24)
g.1

Pro4U- -(See -also [10].) For Gauss point (xg),-we- have

d~u _-r u1) 2 a(a^ -- f-
ax :hj

where i=( ±V3/3, ±,V313)-. Now -L2(4) = (^ i - a, )--~is a linear
functional -of a ̂ (~ -with 11Alu)j _< ji2-aj. uCl~l 4~ npriu
lar, if ar were a-cubic -polynomial; -then L2(a) would vanish. -identically,
which-imrplies on -applying the Bramble-Hiubert lemma that

-and

- (u - u,)-(x8) S Ch2J4..(6

A similar -bound- -follows :for (a/dy)_(u - -u,) (xg), and combining- these
results

jV(U- - U,) (Xg)I :5C / 2 JUj4,e 27

at any- Gauss -point- xg E G.
Summning over all the Gauss points and taking the average,

7,XVu-1L)x) NG-'Ch2 7,IUI4.,
NGg.] e

~ C~~fuJN'.~2  (8)

<5 CWi1uj4,

since Xff~dxdy = eff~i-7'ked~d-q Ch2N0 .
Recall that-for vh-belonging to S,a finite --dimensional space, we have

the inverse inequality jvh(o.~. :5 Chr'IvhIo,,. Setting vh, = (a/dx) (u, -- uh)
and vi,= (d/dy) (u, - -ulh)respectivelywe-can -use this-inequality to obtain
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-YjV(Ul - Uh)_(x)J :5 X IV(U, - Uh)1O0,e,

-e

.: CNG4IIu1 UhIII.

Thus-applying Lemma 2, we-have

7, j V(U' -Uh) (Xg)I -CII~uI4.-(30)
Gg.

The desired -boufnd on AT is,- then obtained- by -writing- u - uh -

u, + (y, - uh) in-eq. (22)'-and- aplying eqs. (28) and (30). The second-esti-
mate-(24) follows -easily -fromn-the inverse hypothesis-on the-triangulation.

Note-that-for Pu, we have a si milar resultj ie.,

NG
~ ~;I~u-PU) (Xg)J :5 Ch3(1U13 + 1u14)

ThisN estiae _may~be obandby noting -that -eq. _(29) holds: with, u~ ~

placed -by Pu and that -a bound- for llIu - -uIjF is available.
The result-in Theorem 1 may,.be-strengthenedd with the -introduction of a

-discrete L2 -norm,as in ref. [11]: The--seminormn I vjh is defined by

Iv~h={~~4 ~ 24 + h( k ) 1]},32

where 4 =(±V3, '±_V3/3).
This-seminorm is-equivalent-uniformly on Sh to-the sem-inorm-1H1

'IvhlI :5 jvjjh_ ___4cvhjI for~all v,, n- Sh'(33)

Sincel _r h S' the Poinca-re inequalityimlethtvI sanomnS,
wesethat IvhIA is also-a norm onS . With this-in-mind,-we write-the semi-

norm- hA as-11H1.

Theorem 2. Let-u.-1(fl) then

jl -UhA :5 ChII 4  (34)

and

It -Pul,- Ch 30U13 + -u4.(35)

a*? e - PuV< -4
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Proof, We first esiaeIu - h. From-the -proof of Theorem- 1; we
have-[L2() U Cia 4,;, and'sinilarlylfor the-7 -derivative -term, so-

-b2

:5 ( Ch6J2I'e) (36)

5 -Ch3Iu14.

Next observe that,(u, -zu,)- ESo'. Applying-eq. (33) -and Lemma 2, we-
obtain

I1141 - uhil, -: Ch3I114
and

I~i u i J h(U13 + JU14Y (37)
The triangle inequality May now be--use-d-to show -the desired estimates.
This is a--stronger- result -than-Theorem -1 since A <: Cllu- - Uhij

Next' we -turn to- investigate derivative superconverg-ence--along- special
-lines. More-specifically, we-show that, as- in -the -linear porobem [15] and-
also the- -linear -mixed- -finite elemenit method ,[16], superconvergence of
-auhlox-and auhIay occurs -along -lines -that-passtrugth aspon-
-and parallel -to the y axis and'x axis, rspectively.

We introduce- the following seminorms- for sufficiently smooth v:

k a~(l~dl(38)

eV] ke,

-where the -second--sum -is -performed- over all -the Gauss-points lIg ona-
straight-line parallel to one of the coordinate- axes, Wk-are the-weights, and-

4are the Gauss -points -on a one-dimiensional reference element. In our
case wk 1nd4=±(V313).

Theorem3. Let- u E H'(fl); -then-

[U- - uj] :5 Ch'11uI 4, i- =1,2- (39)

and

[u- - Pu]i.- C/z3(1u13-+ I1114, i = 1 22- (40)-

Proof. Again we estimate [u - -u,], and [u, -- Uh]i and then apply
the triangle inequality. Let_(4k,s), -1 < s- 5 4, be fixed and set-LO()=

(aa)(2--2,) (4k,s). This is cearly a-linear-fu nctiona[ of- e2 H 4( ) with
1L3(01)5S Ia - ii_~ Cj12fl4,i- If a2 is ' quadrAtic polynomial, aj M U and
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L3(a) 0. If-tt = gI, thei.-2,= and-L3(u)' (3f' - 1)(,=0, since- 4
are roots- of -the Legendre- polynomial- 3 2 - 1. If -t = t -i q= and

(U^) M0.- T h us, L 3( vaihsidnial -for cubic -polynomials ian

once-again-applying the B rmbl-Hilbert -lemma, we get

1LO()I 5 C~IU^4.i. (41)
Thus,

[u -={ > W ~ f LO()12ds}i

< _C 2 a d}(2

<~ Ch3JUt4.
Observe th, t-forlvh E h = 118vh/811jo, since the-two-point Gauss rule

is xat orquadratic-polyno mials. As-u,- -u 0 ~ ehv [U/ - Uh]I =

I(a/aX) (11, -_Uh)jjo :5 1111-- uthIII, so applyi n g.Lemma 2 we-get fu, - u,,]-:
Ch3I~uI 4-and-hence~i Eu- Uh]i 5 Ch3II14. -In a-simnilar fashion we-may show
[u - Pull :5.Ch(IuI3 + juiji).

-To prove-the-estimate-inmthe [71 seminorM, we fix-(s, ),-1 :5 s: S 1, set
L4(a = O/O) ( - ,)(s, 4)and proceed, as before.

-Remark. -From-Theotrm 3 we may deduce that-at the Gauss points-along
-the sides of-the -elements, the -tangential -derivatives -are-,superconvergefit.
-Note also that-even though-we have-restricted our analysis-to quadratic ele-
ments in two-space dimensio-ns,-these-resulis~may-readily be extended to el-
ements of-higher degree and in different- dimensions (see:also Zal[9)

3. APPROXIMATE BOUNDARY FLUX;CALCULATIONS-

Let-us-now consider the-problemn of estimating-the error--of-the approxi-
mate-boundary-flux procedure (9). Subtracting eq.-(9) from eq. (8) we have
for all-v~ h

( - qh,vh,) = a(u -- 14,V,,) -(f(U) - f(U,,),V,). - 43) z

Using the -global- L2-error -estimate 11u - uhilo :5 Ch jU113 and-the Lipschitz-
property off, we get

J(fpu) - f(U,,),v,,)I Ch3jujI~jv,,lo. -(44)
In eq. (43), we write a(tu - uh, v,) = a(u - Uii,Vh) + a(u, - 11h,v,,) a nd
bound-a(u-- it,, v) -using- Lemma 1. Then applying the -Cauchy-Schwarz
iequality to a(it, - tth,v,,)-and invoking Lemma 2,

Ia(u-- u,,,v,)l :5' Ch3 juII 4IvhII-
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Thus,

I~q -- qhV')-I -: ChIJuJI4IJvhIII. - -45)J
let Sal-denote-the space of functions obtained-by restricting: functions in-

SA to-the boundary afl This-is precisely the function space -to -A'hich the
aproimteflx hbelongs. As Sh is -a subspace- of L2(afl), for each-

q-(e L2(ap) we may-define-the projected functionRq, in S hby_ the relation

vh - Rq - -q -, we obtain

JRq- -- qhllo'on- Ch3 JuII4IJVhIII-, (47)
where vA now represents -the-extens-ion- of the -boundary function Rq - -qj, to
a' function-that is defined Over 6~ and is in-Sh.

In -viw of the- inverse -inequality [18]

Ivhll --- Ch-Jvhi9.an) (48)
We-may cdrnbine eqs. (47) and -(48)cto obtainz

IJRq-- qhjo.an- s Ch" "jIu114  (49)
Iris- not difficult-to see that for-theJflux -function q,

Jq-- Rqjooon = infllvh- - qljoaon, Vh -E- h

:5 Ch5'liqljsnmn (50)

:5 Ch~rjju114.-
Thus, we-may combine these-results -to obtain the following:

Theorem -4. For u -E= H_4(fl), the error ofthe approximate -flux computed
from (9) may be estimated-by

J~q - qhIio.an :5 Ch"I~UII4. (51)

Remarks. This result is -not -entirely -satisfactory since in -computations,
the rate of convergence offthe -flux _approximation has been-observed to be-
0(h3) for-biquadratic elements, indicating that the-above result is probably
suboptimal.- Note, however, that-it is stell a superconvergence result--since
the global rate-of convergence of qh is expected-to be 0(h"2) only.

4. EVALUATION-OF INTEGRALS

Jn -many applications, integrals -of the form F(u)- f fn ue/dx or G(u)=
.f Vu 'dx must be evaluated- where u -is 1he weak solution--of -eq. (4)
and ipand tae sufficiently smooth functions. To estimate the error
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I F(u) - F(ulfI= it is, convenient -to have at- our disposal negative-nhorm esti-
mates -for e = it - h.

For an--integer s a: 0,we-have by definition-

=lll- -supEH~~\{} (52)

Thusbfo E H(fl)\{0}, we-seek to establish-a bound for-(e, 4').-Before do-
ing-so,-et us recall that if uis the weak solution-of eq. (4) and-uh-the finite
element apprxmto -ine. -(5), then by the-mean value theoremr we have
the- following orthogonality--relation:

a(u -Uhvh) - (P~UY) - f(Uh),Vh)

a(u. - uhA - f (j [tU + (1' t)uh]dt) (U -- Uh-),Vh)

=a(evh)-- (h(x)evh) 53

0- -for all-vhhlSo.

Let -0 E Jj(f!), -be -the data- in the Auxiliary problem

b/i - g(x)4r = .0 in-11, (54)

= 0-Oon-afl, (55)

with -L the- linear elliptic-operat orin eq.-(I):and gx O/ur~),we
ing the-weak solution of-eq.-(4). Then

(e4)=(e, 4- (g (x) 41

Let q'h bean - arbitrary element-i 0~ Setn-h lhin the orthogonalit
relation-(53) and- subtracting -from-eq. (56),

(e,4O) a(e, 4v - 41/h) ;- ([g(x) - h(x)]e~l/)- + (h(x)e, 'ph - el/)

s5-Ce 1 4 - eli + I([g(x) - h(x)]e, e/)l:+ I(I(x)e,41 lhi (57)

Now

fg(x)-- h~) = f f(U)- - af [ t

[I' ~ (I (- t) dj fit - Ul~.

So under -the additioniti assumption-that af/Oii is-uniformly Lipschitz con-
tinuous, we -have jg(x) - /:(x1J C U_ - Uhl and, -thus, by- the imbedding
theorem for dimension it : 3,

f-(rg(x) - -h(x)]e, 4i)i < Cf(e' 4,)l :% djefffe)12 41010 Cffellf1uffo! (59)
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Also, as-lh(x)I : <Cforalx due to- the uniform- Lipschitz bound-on af/cau,

lhxe4- 4t'h)l :5Cleliipt - 4411 (60)

Next, let~h be the finite element soluition of-the variational problemn

a4hv)- [g(X)Oh,vh]-=(O)vh)- -for-all-vh-in Sh0

associated-with the-linear auxiliary problem-(54), (55). Assuming that u is
sufficiently -smooth- that 41 E- -H-'2(fl)n f l (fl), we have the error bound

- hs+1 G 1ij0/j4+2 :5CZ+ (61)

From eqs.- (57)-(61),

(e4) ~Ch~IeiI~k~+ CejI4Io

If -Sh-consists ofz elements- of-degree-k,.then s + 1 :5 k and-

(,4) Ch" l+IIulk+iII4Il, + Ch 2kIluIR+i1lllo.

Thuis-for O- < s 5 _k - -1, we- have

IleIIl <5C1k+,+Ilul k + Ch3AtlUIR+ 1- (62)

In Particular the L2-normn estimate-is O(Ik+i),-in accordance with'the corre-
sponding estimate- forelinear- problems. We summarize the result-as follows:

Torem 5. Let u -ethe solution of eq._(4) with-u E= Hk'(fl).-Let S b
the.-space-of finite elementsof -degree k. If,-in additionto the properties
(i) (iv)- listed -for the'boundary-value problem (1),-(2);zthe nonlinear- forcing
term f-is-such that -af/Ou -is -uniformly- Lipschit-Z- continuous -in- R. then for
0 :5s - k - 1, we- have

Returning--to the problem- of-estimating the error- in -approximating -the

integral-F(u)--by F(Uh), we have:

Corollary-1. Let ift-E H-(fl):and le hbe a-finite element space of de-
gree k.Let-F(u) = -f nliapdx. For 0-: s :5 k --1, we have

IFQ1) R10 :5u) ~k+III41I~

-Proof. jF(U) - -F0101 = (iu - uh, Vfl/4- s CIlu - uhI..4lljiP . Applying
Theorem 5, we-have the desired result. -1

Remark.- ...he approximation F(Uh) is superconvergent whenever s 2: 1.
Note that if-4i is very smooth, then s =k - I-and we have the maximum
rate-IF(u)- - F(Uh) :5Oh)
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Corollary 2. Let WI E LH+-J)v n et Sh -be a-finite element space of
degree k. Let -G(u) = 'I'V- dx. -For 0 :5-s :5 k - 1,

IG(u) - -G(u,,) 1 ( ~~'Il,,~*k, 63)

-Proof. Applying -integration by parts,

G(u) f'(h =,V(u - ui)*-dx

= (U - Uh')Wd --nds - J(it - uh)V - Wdx,

where n-is-the outward- unit -normal- on-afl. Thus,

IG(u) - G(uhj)I 1 L - L14.s.~za~ ll+In..an

+-11U -4fl.4,lV - n- (64)-
<Cit - -1I-s-A11K~+a.-

The last-inequality- is obtained using the imbeddingH"~(fil L+ H's+'2(d).
Nw -by appl lying Theorem-5, we-obtain-the estimate (62).

5i CONCLUSMOS
Unde apropiate -assumptions on-the solution uwand nonlinear function

f(u)-we determine error estimates involving the finite element-ap proxima-
-tion to-a class of-second-order elliptic-semilinear problems. In-particular,
the respective- first- derivatives are shown -to remain-superconvergent alocg
-Gauss lines in a -discretization of -rectangular elements. The analysis is ex-
tended to include postproc-essing formulas-for the boundary-flux-and'evalu-
ation of integrals. Thus, one can- extend- the -superconvergence -theory- to
this class of serriina -problems-under-thestedasmio.

This research- has -been -supported i-)part by the Texas Advanced Tech-
nooyProgram. the National Scince Foundation. and the Office or

Naval-Research.
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Elliptic Syste ms- for -a Medium
with, Micro-Structure

R;E. SHO.WALT'ER* -and- N'.J. WALKINGTON
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Austin, 'TX 78712- Pittsburgh, PA 15213

*1.-Introdyiction,

'We consideirboundary-vale protblins .fr degenerate'elliptic systems- fthe

(11.) (u) - V.AxW)+ ~ ~, 1 )ids f E2

.!;ib) I(U) Vy_ B(x'Iy,1U FYE

Hre ~2i oman in R and -for ea ch value of the macro-variable x E Sj is

specified-a- domain Q, -with boundary -r., for -the micro-variable -y -E -P, Each ~of

a, b, A~ is a ±maximal monotone gra ph. These -graphs- are not necessarily strictly

increasing; they may be piecewise cnst ant or :multi-valued. The elliptic operators-

-in (1.1.a) and (1I.'.b) are nonlinear -in- -the -gradient -of degree p-- 1 > 0- and-

q-- 1 > 0, respectively, with + ~.> iso some specific degeneracy is alsoq -n - p

permitted here. Certain first order spatial- derivatives can be added--to (1.1.a)

and (1.1.b) with no difficulty, and corresponding problems with constraints, e,

This work was supported by grants-frorm the-National Science foundation and the Office
of Naval-ilsearch.



variational inequalities, can be treated similarly. A particular example important

for'applications is the linear coistraint

which then replaces-(1.A.c). The system(1.1) withp(s) - - is called a reg-

ularized micro-structure'modl,-and (1.1.a);(1,tb), (-1.t.c') isithe corresponding

ma.tched micro-structuremodel in-which (fqrmally) e -;+ 0.

The tiimeh-dpndtnt form of such a systelmnari'se as a model- for the flow

of a fluid' (liquid or-gas) through a fractured medium. This is Assumed to= be a

structure of. porous and permeable blocks or cells-which are separated from each

other by a highly developed- system of fissures. The majority- f&fluid transport

will.occur along-flow paths through4the fissure systen,,andth relativevolume of

the cell, structure is-much larger than that of-the fissure system. There is a§sumed

to be no direct flow between adjacent cells, since they are-individually isolated

by the:fissufes, but the dyp-.amics-ofthe flux exchagedbetween -each cell- and

its surr bunding fissures is amajor aspect of the model. The distributedmicro-

structure models that. we develop here contain explicitly the local geometry of

the cell matrix at each point'of the-fisure system and they thereby reflect more

accurately the flux exchange on the micro-scale of the individualcells across their

intricate interfade. In such,.a context, ,(.l.a): prescribes the-flow on the global

scale of the fissure system and (1.1.b) -gives the flow on the microscale of the

individual cell at a specific point x in the fissure system. The transfer of fluid

between the cells and surrounding medium is prescribed by (A.1.c) or(1.1.c').

major objective-'is to accurately model this fluid exchange between the cells=and"

fissures.

The plan of this paper is as follows. In Section 2 we shall give the precise

description and resolution of the stationary problem in-a variational formulation

-by rnbnotone operators-from Banach spaces to their duals. In order .to achieve

2



this we describe first- the -relevant Sobolev spaces, the continuousdirect' sums of

these spaces,;and th distributed- trace and constant functionals which occur in

the- system. The-operators are monotone functions-or multi-valued subgradients-

and serve as -models for nonlinear elliptic equations -in divergence form. In Sec-

tion 3 we develop an abstract Green's theorem to describe the resolution of the

variational form as the-sum of a partiM-Idifferential equation;and a complemen-

tary boundary. operator. Then sufficient conditibns of coercivity type are given

to assert the existence of generalized solutions of the variational equations.

Systems of the form (1.1) were developed in Rbsen-(1952), Rosen and Winshe

(1950), Diesler and Wilhelm (-1953) in- physical chemistry as models for diffusion

through a medium with a prescribed microstructure. Similar systems arose in soil

science from-Barker (1985), van Genuchten and DaltonJ(1986) and- in reservoir

models for fractured media in DouglasVet al. (1987), -Hornung (1988). By ho-

mogenization methods such systems are obtained as limits of exact micro-scale

models, and thenthe effective coefficients are computed explcitly from local
material properties in Vogt 1982), Hornung and ,Jiiger (to appear), Arbogast,

Douglas and Hornung (1990). An existence-uniqueness theory for these linear

problems which ekploits the strong parabolic structure qf the system was given

in- Showalter-and Walkington (1991). One can alternatively eliminate U and ob-

'tain a single functional differential equation for _u in the simpler space L2( f),-but

the structure of the equation then obstructs the optimal parabolic type results;

see- Hornung-and Showalter (990). Also see Friedman and Tzavaras (1987) for

a nonlinear system with reaction-diffusion local effects.

2. The Variational FormUlati6n

We shall resolve ot r systems as monotone operator equations. Let Q2 be a

bounded'-domain.in 'r with smooth boundary, r = 9fQ. Let 1 < p < oo and

denote by LP(SI) the-space of-p"' power-integrable-functions on Q?, 'by LP(fl) the

3



essentially bounded, measurable -fun cti6n~j, an& the duality pain ihg--by

fo-aypeair of -conjugate powers, + A=1. Let Co'(2)_ denotethe space--of

infini-tely -differentiable -functions -with compact support in 11. WIM'(fl) is- -the

Banach spaceWoffunctions in-LP(Qi) for which-each partial- derivative -up to-order

mh belongsto_ L'(R),-and W"~ is the closure of GQ00(fl) inW P(11) -See

Ada ms (1975) for informiiation on- -these Sobolev spaces. In addition, -we shall- be

gi'en foreAch x E fl a -bouinded domain -0. which lies locally on-one side of--its

s&ooth -bouixida y, r.. Loet I'< q o0 and-denote by -Y, 1 (f 2  Lq(rx)
'th frde n. w i signs'boundaiy vidues.. Let Ti -be the range of--t. this i

'Bahachs sace with- the norm induced by -yYz firm WI 9(P -J. -Since I'r,, is- smooth,-

thfeeis it unit- outwafd _normal v2()atechsE Fin ally, we -define W.1"(4,0)

to- 'be 'that -closed subspatce cbnii ng of -those oE 'W'49(a2 ') with 'Y-, E- A

i.each- 1,(Vp) is tonatar~i a.e. on Px. We- shall denote by'Vy thegrdeto

six~f) an yVtegradientn

in -order -to prescrib a mneasuiible famfilyo6f- cells, fl 2_,a, I O set S_=Rn

let Q-C- fI k It' be a- gie esrble set, andsetfl.= {-j EW R'- (xY) E-Q}.

Ekch-Qi. eaualei t and'by zero-extension we identify LV(Q)-. Lq(P x

fl")- and each- L'(l,) -i LI(e 3 ) -Thus we obtain

We -shall -denote -the duality-on thisBanach-space by

In~)~q = ,Ux j),Ijx y)d d--, U E LI(Q) , 41- E L" (Q).

The state .space-for our problems--will'-be the product Ll (SI) x VQ)

Note that WIS(SI,) -is- continuously imbeddedin L~~2 ,uniformly-for x-E

4-



., It follows.,that the direct.,-sum

and jU(x)1vi,,-dx < oo})

is L -Banach space. We shall use a variety--of such-spaces which can be constructed

in thisahannier. -Moreover we shall- assuhi-e ~hat- each, I Vis a-bounded domalin-

JR' which lies -locally on one side -of its -boundary, TX, -and-i'. is a-C2 -manifld-

of dimension n - 1. -We assume the Irace liaps fy, W 1 '4(Rj) -+ Lr(l'") 4are uni-

formi!,! bounded. Thus -for-eachUV E _W9 it follow that the distrib~uted trace (LT

defied' by- y(U-)'(x,) -Q~Ux)s, SE r,., x E fl, belongs- to. Lq(Q,LP(rP.)).

The distnibute&trace-maps 144 onto-Tq L(?,) -

'Next consider -the -collection {WX-j 't E f} ;of Sobolev spaces given

-above-and denote-by W, L'(Sl ,9 R))hecorresponding direct sum.- -Thus-

-for each-JU it -W1 it ifows _that- the -distribut-ed trace -y(U) -b-d-ongs to Lq(?)-. We1

define W"' to -be the subspace-of those U E W1 for which -y(U) E

Since -y -'W1 - Lg(f )- is continuous; W01 " is coiplete -with the -norin

This B ana6h space WMl)x 144 will -be -the energy space for -the regularized

probem (.1)and ~" ill'be the- en ergy* space for the constrained -problemn

inwih(1.1.c)- is replaced--by the -Dirichlet, con-dition O11c)Pot ht-~

is -identified- with the closed- subspace f{h'UfU] . U --E WOI!c1. of WJ'"(o) X- Wq.-

--Finally, we-shall-let ,Wo.deniote-The-kernel of -y, Wo = U E -Wq,:-yU =O0in f }.

We-have-defined W.141Yt-be the set of w- E -W119(Q2 )-for which -tw

-is a conistant multiple-of l1, the constant function equal to one- on r-, 'Thus

W~~(2a)is the pre-lixage by -tt of- the subspace _R -1 a of T,,. We spe cified-the

subspace W, s imilarly as -the subspace of 144 obtained -as the pre-imag e by -y of

-the- subspace L9 (fl) -of Tq To-be precise, we denote by A the map of L7(Q ) into



Tq given by At,(x) = v(x). 1, a.e. x E Q, v .E Lf(Q);_ A is an-isomorphsm-of

L9( ) onto a closed subspace-of T. The dual map A' -taking -T' into L9'(Q) is

given by

A'g(v)= g(Av) g J g-(1)'v(x)-dx, g-  E L "(1)

-so we have A'g(x) =gz{,t), a.e. x -E -, Moreover, when gx E LEP(F&)it follows

that

the Integral of the indlcated bounidary functional. Thus, for g E L'(R,Lq' (r,))

C 2q, A'g E Lq'(Sl) is given by

(2. 1): .:'(x _ ya.:xE1,

The imbedding A of L (Q)_ into Tq and its dual map X will play an essential role

in our system below.

'We construct the elliptic differential operators in divergence-form as realiza-

tions of monotone operators from Banach- spaces to their- duals. Assume we are

given A: 2 x -R" -4 WU such-that for some I<p < 9, g- -E-LP'(fl),-go-E L(n ),

c and co > 0

(2.2ra) -(x, C) is -continuous in " E R" and measurablein_,x and

-(2.2.b) (A(x, )- .(x,ij), A-(i) 0,

-(2.:c) A(x, ). >_ c1-i- go(x)

for a.e. x E SI and all -, E W.

Then the global-diffusion operator A4: W'( 2) -0 W --'(S) is given- by

Au(v) = ti A u(x))v(x) dx , u, v E IV-"(c)

6



Thus, each Au is equivalent to its restriction to Co(Q), the distribution

Au -AuI() -- V--V. A(-, Vu)

Which specifies- the .vaue of, this nonlifiar eliptic divergence operator.

Assume we are giVen B- Q x IR" ._+IR" such that ,for some 1 <4 < oo,

-hE.Lq(Q), h0 E (Q),,c and Co > 0

(2.3a) B,(X,y, ) is continuous in - E R" and mea;surable~in ,y),E Q, and

_jB(x,,yj-, _ 1 q<j11 hj(i,y),

(2.3.c) B(x,y,7) _ -ho(x,y)

for a.e. -(x,Y)-E Q and- all C77E Rn_.

Then define for -each - E S1, B W (f1,) W

B~~wwv) ) jV -W,VE W''(~ 1 .

The elliptic differentia: operator on ~fl is;given by the formal part ofBr, the

distribution

Bw- Bz tv (Q = -V B(,, ,.,V ,w)

in Wo1'(2R)'. Also, we shall denote by B. Wq -W. the distributed operator

constructed from the collection {B: +-E }) by

BU(x)= B,(U(x)) , a.e:- x E1, U E W,,

and we note that thisris equivalent to

10U (I) j B, (U(X)} V(x-) dx , UV E Wq.-

The-exchange term in our system will be given as a monotone graph which

is a-subgradient operator. Thus, assume m :-R -4R+ ,isconvex and bounded by

(2.4) r(s) < C(Isl q +1 , s E JR,

7



hence,, continuous. Then'by

we obtain, the convex,, continuous- ffi:L(1,(F) -*IR Assume + ±> 1

so tht -1471(,P V L(P), and--consider~the- linear contin uous maps-

Then -the- composite--.function

Mfu, i (Y - Au), tLE _Wc"'(1,dJ UE Wq,

is-conivex-and continuous on -Wo '(OT)x Wq. The subgridients are directly com-

puted- by standard- results -Ekland and- Temam (1976). Specifically, we have

E- eah(g) if and -only if

and we have, jf, F] E aMlu,UV] ~if and- onl -if f =-A'(p) -in W -P'(Q)- and

F -y '(it)-in W.' for -some p -E -Offz-YU - Au)-.

The-followifig result gives su§iffici-ent conditions for-the-regularized problem to

be-well-posed.-

Theorem- 1. Assume 1 <_p, q, +1 > !.,-an-d define the -spaces- and- operators

A-y abo%. -Specifically, the -sets {1 x -r _Rf} are -uniformly bounded wt

smooth -boundaries, and the- trace-maps {y}- are -uniformly_ bounded: Let the

functions ABand- m satisfy (2.2), _(2.3) (2.4), and assumhe-in addition that

-- (25)m_(s)_- culs', s ER

The :fr ech airf E-W-"(Pl), F E Wq threexists a-solution of

(9.6.a), u E Wo'1(,Q): A(u) - A'(p) = f in W "'(?)-

(2;6.b) U EW :B(U)+ '()Fi W.-

(2.6.c) -p -E L'(!q, L"'(r)) -P E -aff(-yU - Au)-.

8



For-any such solution- we -have

(2.1) jh p(x, s) ds a Fxi),~ e. x E f?

wh er e 1. denotes- the constant unit function in- W"~(R?,).

Propf. The system -(2.6) -is a "pseudo-monotone plus subgradient" operator

equqation -of -the.,form

(2.6') [u,U] -E-Wo"(S) 5xW Wq for all [vV] EWV(O )x V
'A~)+ BU(V) + OMlu,U] ([v,V]) f(v-) + F(V).

It -remains- only to-verify- a coefcivity codiinn _ey)

(2 8)4u( ) + B U (U ) + f(y U -_Au) __,

III~~P~)+ IllW,

as IIUIjW~tp(O) + IlUliwq --).+00-.

-Choose- k- mrak{jjl -I. y --E f~i,:x E -ill and 1et- i = -(vzj..... v)'be-the -unit

normal-on r,. For v E -W'9(.)we-have-by Gauss' Theorem-

H6lder's -inequality -then-shows

II17I1,(,f) :5kII'yZvII,( +qIvIL(l)I1lIL(f,

and from this follows

IIvL,(n < 2kIltvIIlqr + (2k)V(q - 1)q-1 I'VIlc,( R

by Young's inequality. From here-we obtain-

(2.9) cOjjlj -I~~Q < 11 IvIL,,L()+ IIVIL(q V-E iq-

9



Thsfrom- the a~ori estimate

Au~) +3(V! -+M('YU - AU)

(2.10), CO Il Vulip,(q), -11I1OIp(fl), + _CO Iiyl"IIq) 2 -IIOIIL'(Q

+cI'U- Au~tlL,(i,(r.)) U E WO''(fI) ,U -E W9

the Poincare-type inequality (2.9) and the equivalence -of lviul-n -with the

norm. On W"(fl),-we can obtain. the -coercivity condition (2.8). Specifically, if

(2-.8) -is bounded y K, then-(2.10) is-bounded-above by

<K(lulw.-P(ql I,1LQ+IY cI~~~) + +IIU~l,~

and the last term, is -dominated by the first-. This gives-an explicit boin-d on each

of-these-terms and--hence,.on IltilIwi.p(A) + IlUllw,-
Finally, we appl (2-b-ote fntoV E W, -given- by V(x, y = v(x)

fornsomq& v E Lii!),- and -this shows

-P(7v) - iv

since 1U(V) =,and-thus

jA'Pi~vx~d =~(Av =p-yv = (F(.),I)v(;;)dx-.

The identity -(2.7)-now follows rom .1)

The more-general case (1.1) of a-monotone-poinitwise perturbation is easilyd

handled likewise.

Coroll'ary 1. Let-Vr R ~R+ and- -': R -be convex-and continuous,

with jp(O) = 1(0) = -0, and-assumie

(2.11)-- P(s) C(lSl1 + 1- 4(s)< is + -1):, s E R

10-



For -each-pirf fE WP(),FE W, j-here-exists~a-solution--of

(2.12.a)--_ E : a + A(u) -- A'(ji)-= f i 41',.

(2.12.ib) U E M' -:-b +13(U) + 7 !(P),= F ih _W91

(212c) p-E-Ofi(yU - Au) in- t?'(fan(d)) f

(2.12-.d) -6 E 6 p(u) in P'9(fl) '--b E 8' (U) in L9'(Q).

For any such_ solution we have

.(2.18)- jIn (y) d 4j(x,s)d &= -(F(x), 1,) jale. x-E 12 .

Proof. This follows as-above but with the continuous convex-- function

VI[uU jI ,u(c) z+ 4_(U~x,11)).-dyd

+ fi~lU - Au)-, -[u, U]E x'o!Ol X Wq.

The -subrain -can- becomipute6d-termwise-because the three-terms -are-contin-

uous on LC(fZ), -Lg(Q), and -L'(!, L'(I')), respectivelIy.

Remark The oweD bound (2.5)- on rn(.j may be deleted in -Corollary 1 if sc

a lower estimate -is- known- to hold for C_. It is -also- unnecessary- in the-matched

microstruicture model; -see -below.

-3.. The- Green's, Formula

-In order to prescribe the boundary condition -(l1..c) explicitly, We develop

an- appropriate Green's-formula for -the operators Bz. Note that we-can identify

L9'~) w-~9'f~)sine 1~"( 1, isdense in.L(Q ),-so it is meaningful to

define

This is the domain for -the absiraci Green's Theorem.



Lemma 1. There is a unique operator-Os : D, T for which Bui = Buj +

"7.8uw for-al t E D,. That is, we have

(3.1) -Bt~v(v)= (Bw,V)L(Q,) + (O.w,-YV) , ,- W"',CE,)

for every wE D.

Proof. The strict morphism t, of WIo(pl), ontoT, -has a dual -y: which is an

isomorphismof T. onto W0I9( z)±, theannihilator inW",(ft4)' of the kernel of

7z. For each to E D-, the difference Bzw - Bi, isinW 0f(fz)L, so it is equal
to 7 (). for a uniqueelement 8.w E T .

Remark. The identity (3.1) is a generalized decomposition ofBz -into:a partial

differentiai operator on , and a boundary condition- on r. If -is smooth,

v, denotes the unit outwardnorma on- 3 , and ifJB(x,,Vw) V £[Wi (flA ) ] ,

then w- E D. and from the- classical- Green's Theorem -we obtain

B~~w~~v)~ -( o v)Vl) izs~W)i(3)-YV(S) d&,- -v E W_14

Thus, O~w-- =(x,., ,w)-i2 is the indicated-rormal derivative inLt'(r-) when

B(x,-, Vt) is as smooth as above, and -sowe can regard -ao in general as an

extension of-this nonlinear differential operator on the boundary.

The -formal part of B -W -* W1' is the operator B W, - g- W given by

the restriction B(U) BUIwo. -Since WO is dense in:Lf(Q) we can-specify the

domain

-- D-- {U E Wq : B(U)-EV'(Q)}

on which we obtain as-before a distributed form of Green's theorem.

Lemma 2. There is a unique operator-O: D -- T' such that

B(U)(V)= (B(U),V)LCQ) +-(aU, -V), u ED, V E -W9,.

12



The orem:2. Let -the Soikolev spaces- and. race-ojpera t Qrs begiven- as-above. We

summarize them in--the-fol~owing -diagramns

UU U U

U U T

- n hih i~isth rstition- of -y to 0 1 . WO"q(SI?)- Wo are dense in Vfl-
in -wih---i h-etj

L'Z(Q), respectively. 1L6t operator Bx, -X-E -Sl,,and- B -be given and define their

fotial-parts B, -B as- above. Thn -oitutthe- doins D,,D and -boundary

operators V, 0- as in- Lemma- 1 and Lemma 2, respectively. It, follows -that- for

any -UE W.,

(a) BU(Z) = B,(U(xT)) in WO'%Z) for- a.e. x E fl, -and U E D- if and- only if

-U(x)- E_ D, for a.e. x-E 11-and-x P.-+ B ,U(x) _belongs-to LI'(Q);

(b) -for each_ UED,

OU(x) = 0,-(U(x))- in T.-.for a.e. x-E 11

and

B-_U=-BU+-y(A'aU) in IV,

and for each V EWi -we have

B.U(x)(V(x)) dx = f- BxU()V(x)ddx+j (arU(x-)I)(-Yi:V)(x)-dx.

Proof. (a)- For V E Wo we obtan -from the definitions-of B,-B and B, respec-

tively,

B BU(x)V17(x) dx =jBU(V) dx =jBU(x)(V(x)):dx B j BU(x-)V(x)-dx,

13-



.n'd so, the first equality holds since W = L.'(, 11 ) The characteriza-

tion of D is immediate now.

(b) For V E W9q we obtain from the definitions of , ,, resp.ectively, and

(a)

J aU(-yxV(x))-dx_ a U('yV)-dx j(SU -BET) (x)V (x) dx

Since the range of -y is T= L'(?,T'), the first equality follows. The second is

immediate fiom Lemma 2 since on W, \- = Aoy, and -y' -y 'Y, and the third

follows from the preceding remarks.

Corollary 2.- Inthe situation of Corollary I, E L(P) andF-E L9'(Q).if and

onl A ELq'(11), and: B() E L9() ni that -case -the -solution sati~fies

almost everywhere

a(x) E O9V(u(x)) ,a(x)+Au(x) + jb(x,wy).dy- f(x)-+ jF~x,y)dy , x ES

u(s)=O, s ET,

b(x,y) E O8(U(x,y)) , b(x,y) + BU(x,y)- = F(x,y) , '' E1,,

p(x;,) E Om(-yU(x,).-U(x)), o&(U(x))(S) + ( s,)- = , s r.

Finally, we note that corresponding results for the matched microstructure

model are obtained directly by specializing the system- (2.6') to the space W01.

This is identified with-{[-tU, U' : U E W' as a subspace of W1'P( ) x W.,

and we need only to restrict the solUtion [u, U] and the test functions [v, V],

v-= yV, to this subspace toresolve the matched model. Then the-exchange term

AI -does not occur in the system; -see the proof of Proposition 1, especially for

the coercivity. These observations yield the following analogous results for the

matched microstructure model'
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Theoremn 1'.. Assume I1< p, q, 1 + I> ~ and define the-spaces-and operators

A, -y as before. Let the fnctions A, B, aind m -satisfy _(2.2),,(2.3)- and (2.4). Then-

for-eachipair f' -W -,P W 1s ), 1~ W-there, existsa &unique ssolu tion o

(3.2.a) t4 E W1I():-A(u) f f+ (F,1) in: W1~'~

(3.1.b) :U E W1_: .8(U-) = F in WO'

I32c -jU Nitu in L'(II) C

Corollary 1'. -Sqppose;V,t aregiven as, before -and-,assumne -(2. 11). For f,F as-

above there exists a unique solution of

(3.3.a) u E W--PQ:a + (b, 1)+ A(u) =f + Fi.in W"()

:(3 .3.b)- UVV b+B(U)F in WO,

(3.3.c) -yU =-Au in LV(P2) C T9

(3.3.d) -a E 8 Ou)i L" (1), ~b E 8'11(U) in L#' (Q) .

In--addition, f E Lq' (n') and F Eo Lg (Q)i and -nl-if kuEL'~) n 8U

L-4Q) and in that case- the-solution-satisfisa-lmbst'everywhere

a(4)E 8p(U(X)) _, a(zr)-+ Au(x) + b(X~/)dYj= f(-) + fF(x, y)-dy, x-E 1,

U(s) =0O sr ,

b(x, y) E 04)(U(-XIY))_ h (x, y)-+ BU(x, y) =F(x, y) ,y E S~ I

U(x' 5) = -u(a)-, s-Er

Remrarks. For the very special case of p >2adau ,b(U) -- U i n

the situation of Theorem- I it follows from Brezis (-1972) or Lions (1969) that the

Gauchy-Dirichiet problem for (1.1)-is well-posed in the space LP(0, T; WO'" (Q) X



.Wp) with-appropriate initial data u(a, 0), U(x, y, 0) and source functions f(x, ),

F(x, y,t). A similar remark holds in -the case of Theorem 1' for the matched-

model wiux±.(.l.c'). These restrictive-assumptions will be substantially relaxed-

in Showalter and Walkington (to appear).

Furthermore, variational inequalities may be -resolved for problems corre-

sponding to either the regularized or the matched microstructure model by-

adding -the indicator function of a convex constraint set to the convex function

IQ. Thus-one can handle such problems with constraints on the -global variable-

u,the-local variables- Uor -their-difference Au-:-/U on ' the-interface.
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A Porou _ Media Systemn with- Microstructure
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Abstraict. A model- of nonlinear diffusion- through a porous- medium- is
considered, -where the solute- is -adsorbed- througrh the boundaries of the
Thdi'.4dual dells' in the prescribed inicrostructure, and -the- flow- Within each
~celtis governedbys~aeorreson:ding porous mediumn equation. -Thexresulting
system is shown to6-be we l-posed-in anaporae V_ space, -and. certain-,
-propertiesmof the- solution are obtained for special cases.

1.Inrod udction-.

We begin with a description-of the porous media- system, to be studied. Let SI be-

a bounded domain in RM'which-lies locally-on one side of its C' boundary r. -Denote-

-by A -the Laplace operator-in R~N an& by-n -the. unit -outward normal onrP. -Suppose-

that Q-is a giv en measurable subset-of 2 x RN and-set-sl2- {y E -RN[X, y] E Q}.
For each, p6int x- E- 11 we assume 2, is a domain in 1RJ with boundary r., and-these

satisfy-(uniiffomly- in x)- the'same hypotheses asR -2and r; denote by Ay, the--Laplace

--operator -in the -micro-variable -y- E Q. and -by 'nx -the unit outward normal- on r..

Suppose we- are-given five maximal monotone graphs in IR denoted- by a, b, q~, #3,'.

-We shall consider the singkular-degenerate-parabolic-systemn

(1.1&) (V ) - AyW -3 F , yE Qr.
at
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:(1I~i) ~ YW n,, + ( I.(a(w))- Eg' r~r

for t > 0 with initial conditions- d(w(x-0)), b(W(zy,0)) prescribed in addition to

-the sources f E _L( Ix(0, o)) ad F E L'(Q x(0, 6)), where Q = F Ix _ n. Thus-

:(1.1.a) governs the flow on the macro-scale of the porous medium fi, i.e., through

-the fissures ithi s global" dom'ain, and (1.1.a) prescribes the flow on the micro-scale

of the individual celt -located at the point x-E'fi, The integral:term in (1.1.a) is

the total' flux flowing across r into the cell, and ithis flux is determined by (1.1.93).

The monotone graphs are possibly multi-valued functions, so we obtain inclu-

sions instead of equations: the corresponding equation holds for some: selection-out

of the graph. In general, w(x) is-the density of mobil solute- at x E S, W(x, y) is-
the density of solute at y Ei adsorbedin this cell, a(w) and'a(-W) represent cor-

responding concentrations ofthe solute presentIb(w.)-is-the:flux across-r at a given

density w, determines the trans ort of aros fogi

density W on the inside of and- concentration a(w) on the outside of this cell at
x These last two graphs correspond to the adsorption isotherrspfthe~media.

The problem (1.1) will be regarded as an abstract Cauchy problem for the

evolution equation

(1.2) u'(t) + A(u(t))- f(t) , t> O

in the Banach space X - LI (fZ) xL I (Q). Recall from [3],[2] that anintegral solution

of (1.2) in a Banach space X is a u E C([0, oo), X ) such that u(t) E dom(A) and

l(t)- xI11-5 11u(s)- x j + j(-f(r) - y,u(r) - x)-dr-

for each y E A(x) and 0 < s < t. The pairing in the integral is -the semi-scalar-

product

(y,x) - sup{(y,x*): x* E X* , Ilx*It = Illxl X*(x)}

A (possibly multi-valued) operator A on X is called accrztive if

IluI - u211 _5 IIUI - U2 + 6(-fa - f2)11
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for all e > 0, [ Ef] E A, [92, f2] E A. If also I + A is -onto X then A is called z -

m-acretive. The fundamental result of [3] is- that for f E L1 ([0, oo), X) and uo E

domn(A) there-is a unique integral solution u of (1.2)-with u(9) = uo. This integral

solution for the appropziate m-accretive operator in L'(2) x L'(Q) will be the

"generalized solution" of (1.1.).

2. The Stationary Problem.

We begin with some iotation. For I <-p:5 oo we denote by LP(f2) the usual

Lebesgue space, and the conjugate exponent by p', so I + , WmP(f2) is the

Banach space of those functions Whose derivatives up to order m :belong to LP(a),

c( () is the space~of infini'tely differentiable-functions-withcompact supp6rtin-92,

and w 'Oe(SI) -is the closure of Co(2)-in-WTm P(Q). See [1],for information-ohw these

Sobolev spaces. Specifically, let,-ro: WI,P(2)--- LP(Pr)and -'., W"(g2x) - LP(r)

denote the trace maps onto boundary values;

An essential construction '. h- continuous direct sum or random Banach space

denote-by LP(n, LP( 2z)); We identify LP(i,LP( 2)) LP(Q) by4he Fubini-Tonelli

theorems with-the duality

j{j W(x,y)4(x,:y)dy}dx , WE YL(Q), EL'(Q).

Since W",P(f2,) is. continuously imbedded in_,LP(2:), uniformly for x E 2, -we can

-identify
LP (n, W1I(Sl))= {W E LP(Q) W(x) E w",(IJ

a.e. x E 2, and IIW(x)II,,P dx < oo}.

Similarly we-construct LP(92, LP(Px)). We shall assume the trace maps r. W ' (92) --

Ll(r)-are uniformmy bounded and define the distributed trace T(W) in L'(92, L (r))

for each W E L1(f1,W1 ' 1 (92x)) by r(W)(x,s) = r-(W(x))(s), s E F, x E f2. Thus

r L1(n, W1,"(n)) -+ L'(f2, L1 (1')) is continuous. Finally, the (constant) imbed-

ding A: L1 (f2) - L'(n,,L'(r.)) given by (Au)(x,s) = u(x), s E P,, x E 2, and its

formal dual A: L(9,Lr.)) - L'(Q) given by (U)(x) = fr U(x,s)ds, x E 2,

will play an essential role-in the porous media system.
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The inear Neumann, problem

(.>-zAw f in L (i9) ,Vw ~g in- L T)

is- an- ingredient of each of the. bpun~dary-value problems, below. -By a solution, we

mean-a-

(2.1') W E W1"'(,Q): jVw-Vp= JfW+gr_9oqp(W),j V E W110c(2) .

By-setting w= 1 it -follows that a necessary condition-for -the- existence-of a solution-

is-

f+j gO.

It is~l-ijknown that -this condition. is--also -sufficient for existence of a solution.
Soluti~- ar :niuup to-an additive cbnstant, so thereJ isa iue solution- w

with f__-- = 0. This.solution-satisfies

I1W11 <const. IIf JII(O) + I1gIIL(r). / (i

For a'- maximal monotone-,graph-d in- JR-We say t E o(w) -in LP(f) for a -ieal-

valued: function w on Ri if C E LP( R) and--C(x)- E -o(w(x_)), for a.e. X E 11. The

following:result plays a- pivotal -role-in the- followiPg.

Lemmaz1. Let 1 P- p oo0, f E.__LP(S1), -g E LP(P) and w be-a- solution of (2.1).

Let a be-a maximal monotone graph in R-and 0 E a(0). If~ CE o(w) in LP'(fl) and

77-&(row) in LP'(P), then

Af +g1 _ 0.

-For a L-ipschitz -a the result is -immediate. For the =more gnrlcsitfoow-by

the-methbds- of [5]; see -[4] for -details.-

The stationary- problem corresponding to (1.1) is-the following: for f E Ll(f2>-

and- F E L' (SI, L' (n2 )) = L' (Q)-given, find

W E W"1 1(,Q) , u E a(w) in Ll'(f2) , v- E b(r-ow) -in V (r),

WV E Ll'( , W,"(p)) ,U E o{T'V)in .12(Q) , V E 6(-V- in- L' (n, L(r,)
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such- that

(2.2.a) U - AW + 3-y(A(u)) "'V) f in V (62)

(2.2.V)- v +Vw --n-O in L'(r

(2.2.q~) !JA Win L'(Q)

V _ - =(X(U)) inL(2,(r)

Proposition 1. Assume -y is -cnnoan d -~~ K r r oj=12,

let fj -El (SI) -and- Fj - V (Q)-m'e giv~n, and jizppose i j,-vj, wj, Uj,-V, Wj are

corresp-onding-solutions-of (2.2). The~n

-(2.3.a Ju -U21J~-2 ~[I'u) yu

j +II -f 21 +IiV

:5-:b jj 1 - f 2 +f f2 I f -Y Vii

I- jj IF- + rj t P ,yl(ul) _-(u2)l,

and, hence,

(2.4) jlui--U21+j ]IV21+ j Iu-u 2 ij5 1f2 -f21+jJ I---F 2

Corollary 1. The solutions-satisfy

(2.5.a) j(ul -U2)' + f(tl V2)+'+ JIx I ?y(ul)- -Y(2)

(2.5.b) j (U 1  U2 )+ +f (1II -V 2)+

f j(F 1  F2)+ + jf2Iy~ 1

-5



(6) j(ulr U2)' + j(vi -- V2)+ + j (U1 -- U)

5 jUf - .f2)+ + f (F, - Fj)±

-Proof. For the two-solutions subtract the corresponding equations to obtain (2.2)

-with _u = -ul - u2 , v =,v1 -~ 'V2, etc. Note that w is- -~solution- of a-linear -Neump'nn

problem. Let a-be-the ~graph sgn, i.e., o(r) = 1 if r >-0, q(r-) =-1 if r < 0, and

u(0) =[1, 1]. -Cho ose e(x) - u(@) + w(x )), q(x)- = o(v(s) + -fow(-*)); note

that C E-o(u),-C- E-o(w), since a-is-monotone, and-7 E1 Eo(v) _ 7. E au(Tow) sinice b is

monotone. Thus Lemma 1 appliep,-_Apd we obtain (2.3.a); Similarly, W(x,.-) is a

:solution-of a Newmm;i,- problem-on-11-for ae. x. kl 2 so the -preceding argument

at-a.e..x E I2, followedl -ran-integration-over-S2, leads _to (2.3.b). Also- (2.4)ffIollows

byadding -(2.3).-Fifially, 'the -argument- above -with u-.chosen--to-be the gahsgn

-yields Corollary 1.

The inequality- (2.4) is the fundamental estimate in L'(Q) x L12(Q)-on &-solution

o-the system (2.2). Itshows -that the-dynamnks of (1.11)corresponds to a seigru

_0 contractions inthisspace. Moreover, (%.3y dipasepiil h eedneo

-the -components-of. (2.2)- on-the-exchange -or-coupling termsinVL(2, L'(r,-)).

Corollary 2. Suppose f -E LI(SI)_ and F -E L'(Q})-- For j = 1j2- -let V, E

V (Sl, LI (r )) -be-given andsuppose u1 , v1 , w are corresp onding sol utions-of(2.2.a),

(2.2-.b). Then-

(2.7.a) L-u ur+ j -zI y(ui) - 7/(U2)Ij-_ j V1 - V21j.

:Similarly, let uj be given for j -_1, 2 and suppose j, , 1, W are corresponding

solutions of (2.2-.a),_-(2.2.#). Then

:_(127.b) j jU I --U2 1+jjV W-V21: jr1 iPF h(Ux) - -Y(U2)I.-

Theorem 1. Assume the following-of the maximal monotone graphs a, b, a,f,:

Rg(a +b) = R and- l~domaj 0-;

-Rg(oz+/)=IR and fl[domDRgyoa;

6



-y- is Lipschitz -on Rg-a: --y(r1) - _yr)~~Kjrj riI, r2 E Rg a. Then for each

f -E L'( 2), F E L'(Q)- there is-a-solution of (2.2).

Proof. Let V E Li ( , _Li (1's))--be -given. From- [4J -it- follows -there exists a solution

U-,V'W 6f-(2:.2.a) withYV ieplaced-by V, (2.2.b), u-&a(w) in L1 ( ), and-v E b(row)

in- L'() Fix x E n -and consider -the =boundary-au problem

(2.8;a) W(x)- E 1( ), U(x) t a(W(;:)) in L'( ~

11, E 8 (Tr.,W(x)) in LI(P,,) -

'(2.8.b) U(4 - 4yW(x ) -= F(x) -in L'(2)

(2;8.c) V(z)+ -VkW(x =l

By use of- [a -]E&ih3r -(Au(x)) we-construct -the graph &()C &( ) t

arid g(t) = f(t + r), -6yA~x)r whici '9-8) is-equivalent-to

WV E--Wi 1(S1,)- , UJ E-a(W) , EI(T-W).

U-4AYW=F(x;):-s An L1( .)-

-V- W. =0 -in-L(~4

for- the functions U'= :U(x) - s, V -_ V(x) - -f(Au(a;)), _p4 W0x -E: &an0),

0 EJi(0). rThus-(2.8)ii-s a solution U(x),Y--(x), W(x ) by-[4Jfora.e. - E-12, and from

the estimates -above this family of-solutions -is- a solution -U, VW T of -(2.2.a), (2'-.2,,6).

Set V = T(V); this defines a self-map Ton- L (P., V (r.,)), and Ifrom-theestimates

(2.3) it follows th at T-snn-expansive. Moreover, if Vi , V2 -E L' (SQ, V-Cr.,)) and

the -corresponding: solutions of (2.2) with -V replaced by V in (2.2.a) are denoted

by ui, v3 , wi, -U5 , Vj, Wj for j=1, 2, then--(2.7.a) with Vi and -(2.7.b) hold. If

Mv supjiP-.I :X E SIT, then we -have from the Lipschitz condition on -1

+ i) j I~ h'(Ul) - -Y(U2)1I J U~ 21 + jr IP 'Y(Ul) - y(U2)1 .

Thus-with (2.7) we-obtain
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-so-T is a strict contraction. The fixe& pOint V = T(V) in L' (f2,-L1 (S)) yields the

soiution of (2.2).

Define a (possibly-multivalued) operator A-in LI(Q) xL V(Q)as follows: [f, F]E

A[u, U] if there exist w C W1'"(S2), W C L'(2,WI'V (Q~)).and u v for which

-4w +(Y(,u)- V) =f, -u a(w) in Ll(S),

v+Vw 7'V=O, vCEI(row) in Ll(P),

-AYW =F, U Ea(W) in L(Q),

V+VyW. (Au), V E #(TW) in (

Thus -(22) is equivalent -to (I + A)[u, U]- [f,F]. From-(2.4) and Theorem -1 it

fqllows that (I, ,+A) - ! is a contraction- ofl L ( 2) x L1 (Q). By rescaling the five

graphs it follows easily that -the-same holds for (I +-A)-1 for every e > 0, so A is

m-accretive on L1 (t):x×L 1(Q).
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A PROCEDURE FOR CALCULATING VORTICITY
BOUNDARY CONDITIONS IN THE STREAM-

FUNCTION-VORTICITY METHOD
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SUMMARY
A new- superconvergent projection formula for determining vorticity boundary-data in the stream-
fuuiion-vorticity method is constructed:

INTRODUCTION

The- stream-function-vorticity ( , w)-formulation is a standard approach for numerical
treatment of 2D viscous flows. In~thiszproccdure the problem reduces to-solution of a coupledpai-of partial differential equations - the vorticity-transport equation-and stream-function
equation. These equations can -be discretized -and- iteratively decoupled, and then-solved for
!tc"ates -approximating-4J' and w.-&well-known difficulty in- this.algorithm is the problem of

- specifying vorticity boundary data -asessential data- for the vorticiiy transport equation. It is
standard practice on rectangular finite-difference-grids to-use one-sidedflnite differences of.the
stream-function iterate to compute an-a-pproximation to the velocity and thereby the bounuary
vorticity. t A similar procedure can-be.used in-finite-element methods but-does not fit-naturally
fin this- framework. Here we present-an alternative approach based ori- superconvergent flux
-ideas thatapplies to both straight anid-curved boundaries and can be used for either finite-
-.eifment-or finite-difference computations.

.,FORMULATiON

Recall-that-in the stream-function-vorticity method the stream function-j, satisfies the Poisson
equation

- -A~ca inf (I)

Here w-is-tile vorticity determined from the-vorticity transport equation (e.g.:for steady Stokes
fl6wAw =jf). The stream-function-vorticity equations are frequently-iteratively decoupled in
the numerical solution scheme. The:objective heic is to construct a proceudre that exploits
superconvergence ideas to develop a-post-processing formula from (1) for approximating the
vorticity on the boundary. This can then be used as data for the vorticity transport equation.

We-introduce the familiar Green-Gauss formula for the Laplacian operatorVavuddy u ds (2)
A(-Au)v dx dY= - ' u A (2)
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where u, v are arbitrary admissible functions. In particular, let us select u = ' satisfying ( ) so
that

-.wvdxdy= i V'Vvdxdy- VLds (3)
-fl Jan

Now (3) is an identity satisfied by the solution (0, c) for arbitrary admissible v. In previous
superconvergence studies, a similar construction has been developed and the approximate
solution introduced to obtain superconvergent boundary flux approximations (i.e. for al/an)
(e.g. see Wheeler 2, Carey 3). In the present case we instead use the known boundary data
aV¢On = u,, where s is the tangential direction. Then for known 4, and aOlan in (3) we have a
projection formula for vorticity in (2. Now set the approximate solution &h for 4, on the
discretized domain (2h with v = 0i, the piecewise-polynomial Lagrange basis function assc -iated
with node i on the boundary, to get the approximate projection (for W* w)

w dx d y= V/, - Vo dx dy- u , ds (4)

Now as i traverses the boundary nodes the integral on the left involves only the strip of elements
adjacent to the boundary. Furthermore, since O,(xj, yj) = bij, using a Lobatto (node point)
quadrature on the left simplifies the expression to yield an explicit superconvergent extraction
formula approximating the vorticity at boundary node i within quadrature accuracy as

Qi*= VJ4 - V0, dx dy - u,0, ds (5)

where Q1 corresponds to the accumulated quadrature weight at node i from the adjacent
elements.

Remarks

I. For a rectilinear boundary and bilinear elements the extraction formula (5) is equivalent to
a one-sided second-order difference approximation.4 For higher-degree elements, more
general boundary shapes and irregular grids, (5) is still applicable. The scheme has been
applied in finite-element calculations for viscous flow applications with straight and curved
boundary geometries as well as moving surfaces (Murray5 ).

2. The scheme (5) can be applied with finite-difference methods by formally introdi'cing the
nodal interpolant of the finite-difference solution as OPh.
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